
Application
Programmer’s Manual

TM
MetaCube ROLAP Option

for Informix Dynamic Server® TM
Version 4.0
January 1998
Part No. 000-4190

ii MetaCube Application
Published by INFORMIX Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright  1981-1998 by Informix Software, Inc. or its subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Answers OnLine; INFORMIX; Informix; Illustra; C-ISAM; DataBlade; Dynamic Server; Gateway;
NewEra; MetaCube

All other names or marks may be registered trademarks or trademarks of their respective owners.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
 Programmer’s Manual

Table of Contents

Table of
Contents
Introduction
Organization of This Manual 3
Types of User . 5
Documentation 5

Printed Documentation 5
Readme Files 6
Related Reading 6

Compliance with Industry Standards 7
Informix Welcomes Your Comments 8

Chapter 1 Object-Oriented Programming and the MetaCube API
OLE, OLE Automation, and MetaCube 1-3
Introduction to Object-Oriented Programming 1-4

Object Classes 1-5
Object Class Hierarchies and Collections 1-6
Declaring MetaCube Object Type Variables 1-14

Visual Basic for Applications 1-16

Chapter 2 Getting Started: MetaCube Tutorial
MetaCube in Thirteen Lessons: An API Tutorial 2-3

MetaCube API Exercise 1: The Metabase Object 2-4
MetaCube API Exercise 2: Defining A Query 2-7
MetaCube API Exercise 3: Executing the Query, Displaying the Results

2-11
MetaCube API Exercise 4: Filtering the Query 2-15
MetaCube API Exercise 5: Building A More Sophisticated Query, Pivot-

ing 2-18
MetaCube API Exercise 6: Sorting by an Attribute 2-22
MetaCube API Exercise 7: Calculating Absolute Change . . . 2-25
MetaCube API Exercise 8: Subtotals 2-28
MetaCube API Exercise 9: Building an Interface 2-32

iv MetaC
MetaCube API Exercise 10: Creating and Populating a Measures List-
Box 2-37

MetaCube API Exercise 11: Displaying a List of Saved Filters . 2-42
MetaCube API Exercise 12: Prompting Users to Define Queries 2-46
MetaCube API Exercise 13: Slow Query Warning 2-52

Chapter 3 The Metabase Class of Objects
The Metabase Class of Objects 3-3

Metabase Properties 3-5
Metabase Methods 3-11
Related Constants 3-15
Metabase Collections 3-17

Chapter 4 The Dimension Class of Objects and Related Collections
The Dimension Class of Objects 4-3

The Dimension Collection’s Add Method 4-4
Dimension Properties 4-4
Dimension Methods. 4-6
Related Constants 4-7
Dimension Collections 4-8

The DimensionElement Class of Objects 4-8
The DimensionElement Collection’s Add Method 4-9
DimensionElement Properties 4-9
DimensionElement Methods 4-12
DimensionElement Collections 4-12

The Attribute Class of Objects 4-13
The Attribute Collection’s Add Method 4-14
Attribute Properties 4-15
Attribute Collections 4-18

Chapter 5 Extensions
The Extension Class of Objects 5-3

The Extensions Collection’s Add Method 5-4
Extension Properties 5-5
MetaCube API Exercise 14: Displaying Functions within an Extension

and Displaying Arguments for Those Functions . . 5-6
The Main MetaCube Extension Functions 5-8

Extension Functions as QueryItem Expressions 5-9
MetaCube API Exercise 15: The Absolute Change Function . . 5-13
Extension Functions as QueryCategory Expressions. 5-40
MetaCube API Exercise 16: Buckets and Comparisons 5-44
ube Application Programmer’s Manual

Chapter 6 The FactTable Class of Objects and Related Collections
The FactTable Class of Objects 6-3

The FactTable Collection's Add Method 6-3
FactTable Properties 6-4
FactTable Methods. 6-6
FactTable Collections 6-6

The Aggregate Class of Objects 6-7
The Aggregate Collection’s Add Method 6-8
Aggregate Properties 6-9
Aggregate Methods 6-12
Aggregate Collections 6-12

The AggregateGrant Class of Objects 6-13
The AggregateGroup Class of Objects 6-14
The AggregateIndex Class of Objects 6-15
The AggregateMeasure Class of Objects 6-16
The DimensionMapping Class of Objects 6-18

DimensionMapping Properties 6-19
The Dimension Class of Objects, as Owned by a FactTable Object . 6-21
The Measure Class of Objects 6-21

The Measure Collection’s Add Methods 6-22
Measure Properties 6-23
MetaCube API Exercise 17: User-Defined Measures 6-25

The Sample Class of Objects 6-28
The Sample Collection’s Add Method 6-28
Sample Properties 6-28
MetaCube API Exercise 18: Sampling 6-32

The SampleQualifier Class of Objects 6-35
SampleQualifier Properties 6-35

Chapter 7 The Folders Class of Objects
The Folder Class of Objects 7-3

Instantiating a Folder Object 7-4
Folder Properties 7-5
Folder Methods 7-5
MetaCube API Exercise 19: Saving Queries and Filters to Folders; Re-

naming, Opening Queries and Filters from Folders . 7-7

Chapter 8 The Query and QueryBack Classes of Objects and Related
Collections
The Query Class of Objects 8-3

Instantiating a Query Object 8-3
Query Properties 8-4
Table of Contents v

vi MetaC
Query Methods 8-8
MetaCube API Exercise 20: Executing Queries That Include Parameter-

ized Filters 8-13
MetaCube API Exercise 21: Submitting a Query to QueryBack . 8-15
Related Constants 8-18
Query Collections 8-18

The QueryCategory Class of Objects 8-20
The SortDirection Property 8-22

The QueryItem Class of Objects 8-23
The FormatString and FormatStrings Properties: An Overview . 8-25
MetaCube API Exercise 22: Formatting Measures 8-26

The Filter Class of Objects 8-29
The Collection’s Methods 8-30
Filter Properties 8-32
Filter Methods. 8-33

The FilterElement Class of Objects 8-34
The MetaCube Class of Objects 8-38

Instantiating a MetaCube Object 8-38
General Properties 8-38
Properties of the Three-Dimensional Virtual Cube 8-43
Related Numeric Constants 8-48
Sorting: SortDirection and SortColumn Property 8-49
MetaCube API Exercise 23: Sorting 8-49
MetaCube Methods 8-56
MetaCube API Exercise 24: Drilling Down 8-63
MetaCube Collections 8-68

The Summary Class of Objects 8-69
The QueryBackJob Class of Objects 8-71

QueryBackJob Properties 8-72
Related Numeric Constants 8-74
QueryBackJob Methods 8-75
QueryBackJob Collections. 8-76

Chapter 9 The Schema Class of Objects and Its Collections
Schemas, Tables, Columns 9-3

Chapter 10 The User and DSSSystem Classes of Objects
The DSSSystem Class of Objects 10-3

DSSSystem Properties 10-4
DSSSystem Collections 10-4

The User Class of Objects 10-4
Instantiating a User Object 10-5
ube Application Programmer’s Manual

User Properties 10-5
User Methods 10-10
User Collections 10-11

The AvailableDSSSystems Class of Objects 10-13
Instantiating an AvailableDSSSystem Object 10-13
AvailableDSSSystem Properties and Methods 10-14

Chapter 11 The SystemMessage Class of Objects
The SystemMessage Class of Objects 11-3

Chapter 12 The ValueList
The ValueList 12-3

Chapter 13 OLE Requirements: the Application Class of Objects and Global
Properties
The Application Class of Objects 13-3

Global Properties: Application and Type 13-4

Chapter 14 Scoping Rules
Scoping Rules 14-3

The DimensionElement Object Class 14-3
The Attribute Object Class 14-4
The Measure Object Class 14-4

Index
Table of Contents vii

viii Meta
Cube Application Programmer’s Manual

Introduction

Introduction
Organization of This Manual 3

Types of User . 5

Documentation . 5
Printed Documentation 5
Readme Files 6
Related Reading 6

Compliance with Industry Standards 7

Informix Welcomes Your Comments 7

2 MetaC
ube Application Programmer’s Manual

This manual contains information to assist you in using the Informix-
MetaCube OLE automation programming interface to create custom
applications.

Organization of This Manual
The chapters in this manual describe the classes of objects that together form
the MetaCube programming interface. Each chapter contains information
about one or more related classes of objects, including detailed descriptions
of the properties and methods available for each class of object. This manual
is designed as a reference manual. Programmers who are new to MetaCube
should read this Introduction, Chapter 1, “Object-Oriented Programming
and the MetaCube API,” and Chapter 2, “Getting Started: MetaCube
Tutorial.” Refer to all other chapters in this manual as necessary. The manual
consists of the following chapters:

■ This Introduction provides an overview of the manual.

■ Chapter 1, “Object-Oriented Programming and the MetaCube API,”
provides a very quick introduction to object-oriented programming,
OLE Automation, Visual Basic for Applications, and the MetaCube
programming interface.

■ Chapter 2, “Getting Started: MetaCube Tutorial,” provides an
extensive tutorial that explains how to develop a sample application.

■ Chapter 3, “The Metabase Class of Objects,” describes the Metabase
class of objects, which represent virtual multi-dimensional
databases.

■ Chapter 4, “The Dimension Class of Objects and Related Collec-
tions,” describes the Dimension class of objects and its related classes
of objects. The Dimension class and its related collections allow you
to develop procedures that create, edit, or access MetaCube’s
metadata.
Introduction 3

Organization of This Manual
■ Chapter 5, “Extensions,” describes the programming interface used
to incorporate extensions compiled in C++ into MetaCube. This
chapter also describes the functions created as extensions that are
distributed with MetaCube.

■ Chapter 6, “The FactTable Class of Objects and Related Collections,”
describes the FactTable class of objects and its related classes of
objects. The FactTable class and its related collections allow you to
develop procedures that create, edit, or access MetaCube’s metadata.

■ Chapter 7, “The Folders Class of Objects,” describes how to save
query and filter definitions in folders.

■ Chapter 8, “The Query and QueryBack Classes of Objects and
Related Collections,” describe the properties and methods available
for these two classes and their related collections.

■ Chapter 9, “The Schema Class of Objects and Its Collections,”
describes the Schema class of objects and its hierarchy of Table and
Column collections.

■ Chapter 10, “The User and DSSSystem Classes of Objects,” describes
how user and DSSSystem objects can be manipulated to support the
security features of MetaCube Secure Warehouse.

■ Chapter 11, “The SystemMessage Class of Objects,” describes the
SystemMessage class of objects, which allow you to distribute
messages to users within an DSS System.

■ Chapter 12, “The ValueList,”explains how to return multiple values
into a development environment.

■ Chapter 13, “OLE Requirements: the Application Class of Objects
and Global Properties,” provides a brief explanation of the Appli-
cation class of objects, the highest-level object class for any OLE
software server.

■ Chapter 14, “Scoping Rules,” explains rules for identifying objects
with the same name but belonging to different parents or different
classes.
4 MetaCube Application Programmer’s Manual

Types of User
Types of User
This manual is written for programmers who are developing custom
MetaCube applications. You should be experienced with Object Linking and
Embedding (OLE) and Visual Basic (VB). You should also be familiar with
MetaCube Explorer.

Documentation
The text in this manual uses the following set of conventions.

Printed Documentation
Other printed manuals for the Informix-MetaCube product are:

■ MetaCube Explorer User’s Guide. This manual is written for people
who are responsible for analyzing data about their company’s
business. It describes how to query the data warehouse in multi-
dimensional terms to obtain meaningful reports that are the basis for
timely business decisions.

■ MetaCube for Excel User’s Guide. This manual is written for people
who use Microsoft’s Excel spreadsheet for business analysis. After
adding MetaCube for Excel to the Excel software, the Excel user can
query a data warehouse in multi-dimensional terms to obtain
spreadsheet or PivotTable reports.

Convention Meaning
italics Emphasized words appear in italics. Also used for the names of

MetaCube components and some terms that are specific to
MetaCube Explorer.

boldface Used for code samples within tables. Also used when citing a
particular property or method of an object class or when
referring to a particular menu option.

monospace Used for code samples.
Introduction 5

Readme Files
■ MetaCube Warehouse Manager’s Guide. This manual is written for the
data warehouse administrator and describes how to specify internal
information about the data warehouse so that the MetaCube compo-
nents are able to access and graphically present the database for
querying.

■ MetaCube SDK for Snap-Ins Programmer’s Manual. This manual is
written for the C++ programmer who will write custom extensions
for MetaCube Explorer and MetaCube for Excel. The MetaCube SDK
for Snap-Ins product includes an Extension Wizard that generates
skeletal C++ code, which can be modified to provide customized
analysis functions.

■ MetaCube Installation and Configuration Guide. This manual describes
how to install and configure the MetaCube software components on
both the server and on PCs.

Readme Files
In addition to the printed manuals, readme files are distributed with the
Informix-MetaCube product. These files contain technical information,
including last-minute changes to product capability or documentation.
Please read these files, as they contain important information.

Related Reading
For more information about Informix SQL, refer to the following Informix
manuals:

■ Informix Guide to SQL: Syntax

■ Informix Guide to SQL: Reference

■ Informix Guide to SQL: Tutorial

For information on data warehousing, see The Data Warehouse Toolkit, by
Ralph Kimball (John Wiley & Sons, Inc., 1996).
6 MetaCube Application Programmer’s Manual

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992, on Informix Dynamic Server. In addition, many features
comply with the SQL-92 Intermediate and Full Level and X/Open C CAE
(common applications environment) standards.

Informix SQL-based products are compliant with ANSI SQL-92 Entry Level
(published as ANSI X3.135-1992) with the following exceptions:

■ Effective checking of constraints

■ Serializable transactions
Introduction 7

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Please tell us about our documentation. To help us with future versions of our
manuals and online help, we want to know about any corrections or clarifi-
cations that you would find useful. Please include the following information:

■ The name and version of the manual that you are using.

■ Any comments that you have about the manual.

■ Your name, address, and phone number.

Write to us at the following address:

Informix Software, Inc.
Technical Publications
300 Lakeside Drive, Suite 2700
Oakland, CA 94612

If you prefer to send electronic mail, our address is:

doc@informix.com

Or, send a facsimile to Technical Publications at:

650-926-6571

We appreciate your feedback.
8 MetaCube Application Programmer’s Manual

1
Chapter
Object-Oriented Programming
and the MetaCube API
OLE, OLE Automation, and MetaCube 1-3

Introduction to Object-Oriented Programming 1-4
Object Classes 1-5
Object Class Hierarchies and Collections 1-6
Declaring MetaCube Object Type Variables 1-14

Compatibility 1-15
Object Variables Used in MetaCube API Exercises 1-15

Visual Basic for Applications 1-16

1-2 Meta
Cube Application Programmer’s Manual

This chapter discusses object-oriented programming, OLE-
Automation, Visual Basic for Applications, and the MetaCube programming
interface, introducing six major classes of MetaCube objects.

OLE, OLE Automation, and MetaCube
OLE, or “Object Linking and Embedding,” is an object technology developed
by Microsoft Corporation to enable application developers to build and
integrate component software. OLE is based on an advanced underlying
object architecture called the OLE Component Object Model (COM), which is
the basis of Microsoft’s strategy to evolve the whole family of Windows
operating systems into object-based operating systems and application
environments. COM, the model on which OLE is built, is an underlying
system software object model that allows complete inter-operability between
software components developed by different vendors, even when those
components are programmed in different languages.

In its original incarnation, OLE supported compound documents (for
example, documents that included a spreadsheet from a different appli-
cation), or drag and drop. We are primarily interested in OLE Automation, as
this technology, and not standard OLE, allows developers to access
MetaCube’s full range of functionality from their own development
environments.

OLE Automation has a misleading name, as it is unrelated to linking and
embedding. OLE Automation is a mechanism that allows applications to
expose their internal objects and the command sets that control and manip-
ulate those objects to the operating system. Services can vary widely from
application to application, but they are provided through a standard object
interface.
OLE, OLE Automation, and MetaCube 1-3

Introduction to Object-Oriented Programming
For example, through OLE automation, you can activate a spreadsheet appli-
cation, populate and format specific cells, and then deploy the spreadsheet’s
charting function to create a graph. This is possible even for users without
programming experience, or programmers unfamiliar with the underlying
OLE model.

Corporate developers, system integrators, and power-users can use tradi-
tional programming languages, development tools, and even productivity
tools to access these capabilities. For example, a user could manipulate a
spreadsheet using the standard macro language in his or her word processor.

This is a powerful technique, as it allows corporate developers and system
integrators to quickly assemble larger, customized business solutions using
packaged, component software as building blocks.

One such building block is MetaCube. MetaCube is implemented as an OLE
automation server, so that all of its internal objects, such as queries and filters,
are available for use by any application that supports OLE. Currently, all of
the major development environments, including Visual Basic, C++, Power-
Builder, and SQLWindows, feature built-in support for OLE automation. In
addition, several of the major productivity tools, including Microsoft Word,
Excel, and Access, support OLE automation. Consequently, MetaCube can
serve as the basis for high-performance, multi-dimensional access to your
Data Warehouse, regardless of your development environment.

Introduction to Object-Oriented Programming
To leverage the MetaCube engine, you must first understand object-oriented
programming. Object-oriented programming (OOP) encapsulates function-
ality within objects. Each object represents a set of properties; each property
stores data defining the object. For example, a rectangle object may have
properties such as its width, height, and position. These properties define the
object.

To deploy an object, you must issue a message to that object, changing a
property’s value, or activating a method. The methods of an object define how
that object accomplishes different tasks. Unlike procedural programming, in
which properties are defined and methods executed independently, an object
incorporates both properties and methods, which not only define an entity
but also the operations that can be performed by, with, or on that entity.
1-4 MetaCube Application Programmer’s Manual

Object Classes
For example, the rectangle object may include a method to move the
rectangle. Rather than designing a separate procedure to re-position the
rectangle, as you would in a procedural programming environment, you can
issue a message to the rectangle object, which executes a standard method to
move the rectangle. The procedure for moving a rectangle depends on the
size and original position of the rectangle, as the rectangle essentially must
be re-drawn. A rectangle object however, with properties of size and original
position, may also include a method for moving itself, which you can activate
by sending a message to the object.

Because an object’s methods are self-contained, the object can be called from
any development environment. Whereas the procedure for moving a
rectangle differs from one language to another, the message issued to an
object remains the same, regardless of the development environment. The
movement of the rectangle object is a self-contained process.

Object Classes
There are, of course, an infinite number of rectangles with varying positions,
sizes and shapes. Although we can discuss rectangles generally, and the
properties that define rectangles, such as their position and shape, a program
must define a particular rectangle, with a particular position and a particular
shape. Each rectangle is a separate object, and all rectangle objects belong to
the rectangle object class.

An object class represents a general type of object, and an instance of an object
class is a particular object of that class’s type. An instance of an object class is
often simply referred to as an object. When developing an object-oriented
application, you create or edit an instance of an object class, investing the
general properties of its class with particular values. An object class may
have, for example, a property such as color, whereas an instance of that object
class may assign a value to that property, such as red, green, or blue.

Aside from its ODBC interface, MetaCube consists of a library of object
classes created in C++. To develop MetaCube applications, you do not create
new object classes. A MetaCube application simply issues messages, in the
form of OLE-automation calls, to this library of object classes, instantiating
objects, assigning values to their properties, and invoking their methods.
Object Classes 1-5

Object Class Hierarchies and Collections
The relationship between object classes and an instance of an object class (or
simply, an object) is analogous to the relationship between the type of car one
owns − say, Ford − and the actual car itself, i.e. my Ford, with the dented
fender and the fuzzy dice. Just as you can only drive an instance of the Ford
class of cars, you can only program with an instance of an object class. The
Ford class has properties, such as the speed at which it is driven, or the
position of its rear view mirror, but those properties only acquire specific
values when you drive an instance of a Ford, that is, an actual car, at a speed
of thirty miles per hour, and a mirror tilt of twenty degrees.

Object Class Hierarchies and Collections
Object classes are organized hierarchically, with objects of the same class
assembled in a collection belonging to a particular parent object. A collection
of objects may partially define the parent object to which that collection
belongs. For example, our Ford may own a collection of car door objects, each
with different properties, such as their respective positions, and different
methods, such as opening, closing, or rolling down a window. Together, this
collection of doors partially defines the Ford. Each door, may in turn, own a
collection of knobs or controls, such as a lock or a handle, that partially define
the door. The MetaCube engine, like our example of the car, consists of a
hierarchy of object classes. Each instance of most object classes own a
collection containing instances of another object class. In fact, several collec-
tions of objects of different classes may belong to a single parent object.

A collection of objects is specified by identifying the parent of that collection,
followed by the plural of the class name to which the objects in that collection
belong:

MyFord.CarDoors

A dot separates the terms of this statement, in this case the name of the parent
and the collection, respectively.

To determine how many objects exist within a collection, you can deploy the
Count property, a general property of all collections returning the number an
integer value. For our collection of car doors, for example, the Count
property may represent a value of four, which we can display in a MsgBox, a
Visual Basic for Applications object for displaying values that we use
throughout this guide:

MsgBox MyFord.CarDoors.Count
1-6 MetaCube Application Programmer’s Manual

Object Class Hierarchies and Collections
To determine the names of objects within a collection, you can deploy the
Names property, a general property of all collections that have objects with a
Name property, such as Dimensions, Attributes, and DSSSystems. The
Names property returns a ValueList containing the names of the objects in the
collection:

MsgBox MyFord.CarDoors.Names

To perform different operations upon items within any collection, you can
invoke the methods summarized in Table 1-1.

Table 1-1 General Methods of a Collection

Method Description/Example

Add This method adds an instance of an object class to a collection. The
arguments necessary, if any, depend on the properties of the
added item.

Parent.Collection.Add Argument1, Argument2, Argument3...

Item This method identifies a particular instance or item within a
collection by a sequentially-generated index number or by the
name assigned to the instance. Once you have identified the item,
you deploy one of that item’s methods or properties.

Parent.Collection.Item(Index Number or Item Name).Action

MakeFirst This method and the two that follow re-arrange the order of items
within a collection. This method in particular arranges the
specified item as the first item in the collection, with a new index
number of zero. You must identify the item by name or by its
original index number.

Parent.Collections.MakeFirst "This Item"

MakeLast This method re-arranges items within a collection such that the
specified item is the last item in the collection. You can identify
this item by name or by its original index number.

Parent.Collections.MakeLast "This Item"

MakeNth This method assigns the specified item to a different location
within the collection, with a new index number. You must identify
the item to be moved by name or by its original index number,
followed by its new index number.

Parent.Collections.MakeNth "This Item", 2
Object Class Hierarchies and Collections 1-7

Object Class Hierarchies and Collections
Please note that while MetaCube’s object classes are organized hierarchically,
this hierarchy does not involve inheritance, as supported by development
environments such as PowerSoft’s PowerBuilder. Inheritance allows devel-
opers to invest an object with the properties of another object, in essence
cloning that object. The new object can then be further developed, with its
properties constituting a superset of the old object’s properties. The OLE
standard does not support inheritance.

In a MetaCube hierarchy, each class of objects is defined by a unique set of
properties, which do not overlap. Extending our example of the car object
illustrates the distinction: although a car object is in part defined by a
collection of car door objects, the car and the car door have different sets of
properties, with neither object encompassing the other object’s properties as
a subset of its own.

Remove This method removes an item from a collection; if the item does
not exist in an over-lapping or over-arching collection, this
method deletes the item. You must identify the item to be
removed by name or by index number. If you are removing an
object from the Extensions collection, you must refer to the item
by index number.

Parent.Collection.Remove "This Item"

RemoveAll This method removes all items from a collection.

Parent.Collection.RemoveAll

Swap This method exchanges the positions of two elements in a
collection. Since this method is commutative, you can identify the
two items to swap by name or by index number, in either order.

Parent.Collection.Swap 1, 3

Table 1-1 General Methods of a Collection (continued)

Method Description/Example
1-8 MetaCube Application Programmer’s Manual

Object Class Hierarchies and Collections
Figure 1-1 describes the major MetaCube object classes used to build and
execute queries.

Figure 1-1
Simplified Representation of the Hierarchy of MetaCube Object Classes

Figure 1-2 provides a complete view of all MetaCube object classes and their
hierarchical relationships.

Metabase

Queries

MetaCubes FiltersQuery Items
Query

Categories
Object Class Hierarchies and Collections 1-9

Object Class Hierarchies and Collections
Figure 1-2
Complete MetaCube Class Hierarchy

RootFolder

Metabase

additional
folders

QueryCategories

QueryCategory

QueryItems

QueryItem

Folders

Folder

Filters

Filter

FilterElements

FilterElement

QueryBackJobs

MetaCubes

MetaCube

Summaries

Summary

QueryBackJob

Extensions

Extension

Queries

Query

DrillDataSources

FactTable

Users

User

AvailableDSSSystems

DSSSystems

DSSSystems

DSSSystem
1-10 MetaCube Application Programmer’s Manual

Object Class Hierarchies and Collections
Figure 1-2 (continued)
Complete MetaCube Class Hierarchy

Tables

Table

FactTables

FactTable

Measures

Measure

Columns

Column
AggregateGrants

AggregateGrant

AggregateGroups

AggregateGroup

AggregateMeasures

AggregateMeasure

AggregateIndexes

AggregateIndex

to Metabase Object

DimensionElements

DimensionElements

Dimensions

Dimension

Attributes

Attribute

SystemMessages

SystemMessage

Schemas

Schema

Aggregates

Aggregate

Samples

Sample

SampleQualifiers

SampleQualifier

DimensionMappings

DimensionMapping
Object Class Hierarchies and Collections 1-11

Object Class Hierarchies and Collections
The Metabase class of objects stands at the top of MetaCube’s hierarchy of
object classes as the master object. Each instance of the Metabase class of
objects represents a “virtual” multi-dimensional database (a “Metabase”),
which offers a multi-dimensional view of tables in a relational database
without actually storing data in a multi-dimensional format. The features of
each Metabase will depend not only on the set of relational tables to which it
corresponds but also on the metadata description of those tables. A complete
metadata description of relational tables comprises a Decision Support
Software System, or DSS System. Multiple descriptions of identical tables
may exist, either for security purposes, or to accommodate different commu-
nities of users. Every MetaCube procedure begins by instantiating a
Metabase object. A full discussion of the Metabase object begins on page 3-3.

If the MetaCube engine has not already been launched, instantiating a
Metabase object launches the MetaCube engine. The engine remains running
until the instantiation is released from memory, usually at the end of the
procedure. Upon release of an instance of a Metabase object, the engine may
close, depending on whether the engine was running prior to that object's
instantiation.

Different development environments can recognize the Metabase class of
objects as a MetaCube object class because MetaCube registers the Metabase
object class in your operating system's OLE registry upon installation.

Every instantiation of a Metabase object implicitly creates collections of child
objects, the principal of these being a collection of query objects. Although
the collections are initially empty, this semantic distinction is important
because once you have explicitly instantiated a Metabase object, instances of
other objects can simply be added to their respective, pre-existing collections.
Unlike the Metabase class of objects, these objects do not require an explicit
function for instantiation.

Queries that retrieve data through the particular multi-dimensional structure
represented by a Metabase object belong to the collection of queries owned
by that object. Each query consists of:

■ multi-dimensional attributes, which correspond to the “what, when,
and where” components of the query

■ measures, which correspond to the “how much” component of the
query

■ filters, which set conditions limiting the range of data retrieved for a
query
1-12 MetaCube Application Programmer’s Manual

Object Class Hierarchies and Collections
■ reports or, more precisely, multi-dimensional representations of a
data set, which determine how the data retrieved for a query will be
displayed

Consider a typical query that retrieves the number of units sold, by region
and by brand, for the last two weeks and displays the result in a cross-tabular
report. The measure of the query is units sold, the attributes are brand and
region, the filter defines a range of two weeks, and the report is cross-tabular.
These terms should be familiar to you from your experience with MetaCube
Explorer and are documented more fully in the MetaCube Explorer User’s
Guide.

A different object class represents each component of the query’s definition.
If a query is defined by multiple components of the same type, multiple
objects of the same type are instantiated and stored in that query's collection
of objects of that type. A given query may be defined by one or more
attributes, measures, filters, and reports, with objects of a given class
comprising a collection belonging to the query object. Query components’
object class names differ slightly from their common names, as identified
above.

Table 1-2 describes the nomenclature for these four classes of objects.

Table 1-2 Primary Collections of a Query Object

Common Name Object Name Function

Attributes QueryCategories “What,” “when,” and “where” compo-
nents of a query

Measures QueryItems “How much” component of a query

Filters Filters Defines range of data retrieved

Reports MetaCubes Defines format in which to display data
Object Class Hierarchies and Collections 1-13

Declaring MetaCube Object Type Variables
Declaring MetaCube Object Type Variables
Using MetaCube 4.0 and Visual Basic or Visual Basic for Applications, you
can declare MetaCube-specific object type variables and then safely create
new instances of the MetaCube object classes. This approach to creating
objects yields multiple advantages, including faster processing time, type
safety (Visual Basic will issue an error if it receives the wrong type of object),
and function checking during the coding process. If your MetaCube system
operates over a network using a middle tier, faster processing will be partic-
ularly apparent.

To declare object type variables in MetaCube, you must add a reference to the
MetaCube type library (metacube.tlb) in your project’s type library. Then use
the Dim and Set statements. The Dim statement declares a variable that
refers to an object. No actual object is created, however, until you use the Set
statement with a New keyword. The following example illustrates how Dim
is used to formally declare the variable MyMetabase as Metabase, and then a
Set statement with the New keyword is used to create an instance of the
Metabase object. Use the New keyword to create instances of a Metabase
object only. To create instances of all other MetaCube objects, use the Add
method for each class of object.

Dim MyMetabase as Metabase
Set MyMetabase = New Metabase

You may want to use object references to variables rather than creating an
instance of the article itself. Because object references to variables are refer-
ences to (rather than copies of) the object, any change in the object is reflected
in all variables that refer to it. The following example illustrates how to assign
an object reference to a variable for a Query object.

Dim MyQuery as MetaCubeLibrary.Query
Set MyQuery = MyMetabase.Queries.Add("first query")

In the example above, the Dim statement is used to fully qualify the object
declaration. Because object types in different type libraries may have the
same name, you should include "MetaCubeLibrary" in an object declaration
to prevent ambiguity.
1-14 MetaCube Application Programmer’s Manual

Declaring MetaCube Object Type Variables
Notice that when making a new object reference to a Query object, paren-
theses enclose the name of the query added. When using the Set statement in
Visual Basic or Visual Basic for Applications, you must remember to enclose
parentheses around any arguments. Functions that return values to variables
require parentheses around arguments, but procedures do not. Simply
adding a query without assigning that query to a particular object reference
executes a procedure, while assigning the query to an object reference
performs a function.

Finally, to minimize the system resources consumed by object references, you
should release all object references at the close of your application, particu-
larly since running the application again would otherwise entail creating and
setting object references still held in memory:

MyMetbase.Queries.Remove(MyQuery)
Set MyQuery = Nothing
Set MyMetabase = Nothing

By convention, the object references in this guide will be identified by the
prefix “My,” followed by the class name of the object referenced. In practice,
you can name your object variables however you like.

Compatibility

Object type variables are supported by Visual Basic 4.0, Visual Basic 5.0, and
Excel 97. Note that Excel 95 does not support the use of object type variables.

Object Variables Used in MetaCube API Exercises

The MetaCube API exercises presented in this manual do not incorporate the
use of object type variables. Instead they declare object variables, a
programming technique supported by Visual Basic 4.0, Visual Basic 5.0,
Excel 95, and Excel 97. The following example shows how an object variable
is created in this manual’s exercises. In the example, an object variable,
MyMetabase, is declared, and then an instance of an object of the Metabase
class is stored in the object variable MyMetabase.

Dim MyMetabase as Object
Set MyMetabase = CreateObject("Metabase")
Declaring MetaCube Object Type Variables 1-15

Visual Basic for Applications
Visual Basic for Applications
All examples in this text have been developed in Visual Basic for Applica-
tions (VBA), the macro language for Microsoft Excel, version 5.0 and later
releases. Because most readers, regardless of their preferred development
environment, have installed Microsoft Excel on their PCs, all examples use
VBA syntax. For Visual Basic (VB) users, VBA offers another advantage,
insofar as it is quite similar to VB and actually anticipates many of the new
features incorporated into Visual Basic 4.0. Perhaps the most important
distinction between VB and VBA is that, rather than storing code in text files,
as VB does, VBA stores code in Excel’s file format, as part of a workbook. For
Microsoft Office '97 users, Excel may present a slightly different interface,
which more completely resembles the Visual Basic development
environment. To insert a macro module in an Excel '97 workbook, see the
Excel documentation, as the actions described here only apply to Excel '95
and previous releases.

For developers familiar with PowerBuilder, SQLWindows, C++ or other
OLE-automated development environments, VBA may seem to differ quite
drastically from the language to which you are accustomed. While this may
be true insofar as the syntax for beginning procedures, passing arguments,
declaring variables, and displaying data will differ across development
environments, the OLE-automation calls to the MetaCube engine will
nonetheless remain more or less the same. Throughout this reference, the
emphasis remains centered on MetaCube objects, with a minimum of VBA-
specific functionality.

To develop a MetaCube application from Microsoft Excel, launch the appli-
cation, and open a new workbook. A new workbook typically consists of six
or more sheets, which you can access by clicking the tabs, labeled “Sheet1,”
“Sheet2,” etc., that line the bottom of Excel’s main window. Within each
worksheet, you can deploy Excel’s standard spreadsheet capabilities; you
can also use a worksheet to display data retrieved by MetaCube.

To develop applications in VBA, you must insert a macro module, the site
where you actually enter, edit, and view code. Applications developed in
VBA must always be executed from a module, or by a keystroke, menu item,
or toolbar item linked to a macro module. To insert a macro module, select
Macro from the drop-down Insert menu; from the right pop-up menu that
appears to the right, choose Module. See Figure 1-3.
1-16 MetaCube Application Programmer’s Manual

Visual Basic for Applications
Figure 1-3
Inserting A Macro Module

A tab labeled “Module1” will appear to the right of the worksheet tabs at the
bottom of Excel’s main window. To begin entering code, click this tab, which
opens the macro module.

You can also rename your macro module by right-clicking the module, and
choosing Rename from the pop-up menu. Rename “Module1” as “MetaCube
Code.” By an identical method, rename two worksheets as “Define the
Query,” and “Query Report.”

Once we have inserted a module, and given appropriate names to that
module and several worksheets, we are ready to build a VBA application that
makes OLE-automation calls to the MetaCube engine.
Visual Basic for Applications 1-17

Visual Basic for Applications
1-18 MetaCube Application Programmer’s Manual

2
Chapter
Getting Started: MetaCube
Tutorial
MetaCube in Thirteen Lessons: An API Tutorial 2-3
MetaCube API Exercise 1: The Metabase Object 2-4

Explanation of MetaCube API Exercise 1 2-5
Connection Information in the MetaCube API Exercises . . . 2-7

MetaCube API Exercise 2: Defining A Query 2-7
Explanation of MetaCube API Exercise 2 2-8

MetaCube API Exercise 3: Executing the Query, Displaying
the Results 2-11
Explanation of MetaCube API Exercise 3 2-12

MetaCube API Exercise 4: Filtering the Query 2-15
Explanation of MetaCube API Exercise 4 2-16

MetaCube API Exercise 5: Building A More Sophisticated Query,
Pivoting . 2-18
Explanation of MetaCube API Exercise 5 2-20

MetaCube API Exercise 6: Sorting by an Attribute 2-22
Explanation of MetaCube API Exercise 6 2-24

MetaCube API Exercise 7: Calculating Absolute Change 2-25
Explanation of MetaCube API Exercise 7 2-27

MetaCube API Exercise 8: Subtotals 2-28
Explanation of MetaCube API Exercise 8 2-30

MetaCube API Exercise 9: Building an Interface 2-32
Explanation of MetaCube API Exercise 9 2-34

MetaCube API Exercise 10: Creating and Populating
a Measures ListBox 2-37
Explanation of MetaCube API Exercise 10 2-40

MetaCube API Exercise 11: Displaying a List of Saved Filters . . . 2-42
Explanation of MetaCube API Exercise 11 2-45

MetaCube API Exercise 12: Prompting Users to Define Queries . . 2-46
Explanation of MetaCube API Exercise 12 2-50

MetaCube API Exercise 13: Slow Query Warning 2-52
Explanation of MetaCube API Exercise 13 2-56

2-2 Meta
Cube Application Programmer’s Manual

In this chapter you can develop a sample application involving many
of the object classes, properties, methods, and programming techniques
discussed throughout this text.

MetaCube in Thirteen Lessons: An API Tutorial
Before thoroughly reviewing each MetaCube object class and its methods,
properties, and collections, many developers and power-users can gain a
working understanding of MetaCube’s application programming interface
by developing a simple MetaCube query application.

Although MetaCube exposes objects that perform the work of Warehouse
Manager, which maps the relational database as metadata, most custom-built
applications will revolve around building and executing multi-dimensional
queries, referencing metadata created in Warehouse Manager. Our
discussion of MetaCube’s objects will thus begin with the task of building
multi-dimensional queries. Multi-dimensional queries, which the Guide to
MetaCube Explorer discusses in greater detail, are defined by such natural
business terms as time, product, and geography. As we have noted before,
MetaCube can be thought of as a virtual multi-dimensional database, trans-
lating multi-dimensional queries into ANSI-standard SQL.

This tutorial begins by hard-coding a simple query. It then generates a report
for that query and subsequently adds filtering, calculations, pivoting, and
sorting features. Ultimately, the procedure populates list-boxes with the
names of available attributes, measures, and saved filters, prompting the user
to define the query in the terms listed. Each exercise adds to the body of code
from the previous exercises, with the new material set off in bold font.
MetaCube in Thirteen Lessons: An API Tutorial 2-3

MetaCube in Thirteen Lessons: An API Tutorial
To begin, load Microsoft Excel, version 5.0 or later, and open the file
“M3_API.XLS,” which installs in the MetaCube exercise directory. This
workbook contains a set of named worksheets to which the exercises refer,
and a module for each of the exercises in this tutorial. Create a new module
to begin entering your own application code, or simply refer to existing
modules as you read through the tutorial.

MetaCube API Exercise 1: The Metabase Object
As the logical representation of a multi-dimensional database, the Metabase
object is MetaCube’s master object, similar to Excel’s Application object.
Every MetaCube program begins by instantiating a Metabase object, storing
that instantiation in an object variable. In VBA, the CreateObject function
instantiates foreign objects, with the class name of the object passed as an
argument to the function. Instantiating a Metabase object also requires an
OLE-automation call to MetaCube, prompting the engine to launch. For the
purpose of these exercises, you should launch the engine manually, from
Windows, as your VBA application will otherwise be forced to load
MetaCube each time your application runs.

Each Metabase object identifies a DSS System, which defines a particular
multi-dimensional view of the relational database. Other properties assigned
to the Metabase object typically correspond to other preferences and login
information required in applications like MetaCube Explorer, such as the
login, password, or host connection string. Once you have instantiated the
Metabase object, and set certain Metabase properties, you can connect to the
relational database, using the Connect method of the Metabase object.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object

6 'Instantiate Metabase: Log in to RDBMS, Open DSS System
7 'Instantiate a Metabase object
8 Set MyMetabase = CreateObject("Metabase")

9 'Identify an ODBC data source
10 Let MyMetabase.ConnectString = "Metademo"

11 'Specify a set of metadata
12 Let MyMetabase.Name = "MetaCube Demo"
2-4 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
13 'Specify login to database
14 Let MyMetabase.Login = "Metademo"
15 'Passes value to database on connection

16 'Specify database password
17 Let MyMetabase.Password = "Metademo"

18 'Log in to demonstration database, open DSS System
19 MyMetabase.Connect

20 End Sub

Explanation of MetaCube API Exercise 1

Line 1 contains an optional statement, Option Explicit, which requires you to
declare explicitly any variables introduced by a procedure before using those
variables. Enabling this option prevents VBA from mistaking a mis-
identified variable for an entirely new variable, and thus quickly identifies
typographical errors. The remainder of the line, demarcated by an
apostrophe, is a comment. Although VBA ignores comments, most proce-
dures cited in this text are heavily annotated for your benefit. As a rule,
comments displayed in examples are formatted in italics, which are not
necessary or available in VBA.

The procedure begins at line 2 with the “Sub” syntax, followed by the name
of the procedure and any arguments passed to the procedure. Arguments are
enclosed in parentheses. The empty set of parentheses signifies that no
arguments have been passed to this procedure.

A single variable, MyMetabase, is declared at line 5 as an object type variable.
A “dim” statement declares variables locally, within the scope of a procedure,
whereas a “global” statement declares variables that are available to all
modules in all workbooks. Global variables remain in memory until released,
or until the workbook closes, and should be avoided when possible. Either
syntax requires you to name the variable and allows you to specify its type,
whether that be integer, string, object, long, etc. If you do not specify a
variable’s type, VBA assumes it is of the variant type. For more information,
see “Declaring MetaCube Object Type Variables” on page 1-14.
MetaCube in Thirteen Lessons: An API Tutorial 2-5

MetaCube in Thirteen Lessons: An API Tutorial
Line 8 instantiates an object of the Metabase class. The class of the object is
passed as an argument to the CreateObject function, and the instance of the
class is stored in the object variable MyMetabase. For a full discussion of the
relationship between an object class and an instance of that class, see “Object
Classes” on page 1-5. Please note that all object variables must be “set” equal
to a value, as shown here, while other types of variables allow the optional
“let” syntax.

Lines 10, 12, 14, and 17 assign different properties to the Metabase object
MyMetabase. The ConnectString property identifies an ODBC data source.
The Name property identifies the multi-dimensional map of the relational
database by which MetaCube configures itself to retrieve data from the
RDBMS. Each mapping is a DSS System, created in Warehouse Manager, or
through a similar application developed through MetaCube’s programming
interface. The value specified for this property, the “MetaCube Demo” DSS
System, is a demonstration system referred to throughout MetaCube
documentation.

The Login and Password properties allow you to specify, respectively, the
name of the user/schema to which you are logging in on the relational
database and the password for that user/schema. Except for several
specialized server-side processes, MetaCube relies on the already rigorous
role-based security of the RDBMS.

Once you have provided the password and login information, you can
connect to the relational database using the Connect method, as shown in line
14. Values for any unspecified Metabase properties are read from the
metacube.ini file. For a complete list of Metabase properties, see “Metabase
Properties” on page 3-5.

The procedure ends on line 20 with the syntax “End Sub,” which automati-
cally releases all locally-declared variables. Once the instantiation of the
Metabase object has been released, MetaCube disconnects from the relational
database. If you did not launch MetaCube manually, the release of the
Metabase object ultimately closes the engine. This procedure thus discon-
nects without attempting to build a query. Once you have successfully
connected, you are ready to modify this procedure to define a query.

To execute this procedure, position the cursor between the first and the last
line of code, and press F5, or press the Play button on Excel’s Visual Basic for
Applications toolbar. To step through the procedure line-by-line, press F8.
2-6 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Connection Information in the MetaCube API Exercises

To perform any of the exercises in this manual, you must first connect to the
database and the MetaCube analysis engine. Lines 10 through 17 in
MetaCube API Exercise 1 provide an example of the necessary connection
information. Because MetaCube API Exercise 2 through MetaCube API
Exercise 13 build on each other, connection information is repeated in each of
those exercises. MetaCube API Exercise 14 through MetaCube API Exercise
24 do not follow an incremental pattern, however, and they do not all
explicitly set connection information. Nonetheless, a connection must be
established to execute any of those exercises, just as a connection is estab-
lished in MetaCube API Exercise 1.

Note that default user connection properties can be set in MetaCube Secure
Warehouse. You do not have to explicitly set Metabase.ConnectString or
Metabase.Name (the DSS System name) if you have user properties defined
in Secure Warehouse and you want those default connection properties to be
used.

MetaCube API Exercise 2: Defining A Query
A collection of query objects belongs to each Metabase object, and, in turn,
collections of attributes (QueryCategories), measures (QueryItems), filters,
and reports belong to each query object. See Figure 1-1 on page 1-9. By instan-
tiating a Metabase object such as MyMetabase, you implicitly create the
collections that belong to an object of this class. Rather than using the
CreateObject function to instantiate a Query object, for example, you can
simply add an instance of a query to an existing collection of Query objects.
To add an object to a collection, identify the object being added to the
collection, provide the name of the collection itself (typically the plural of an
object class, such as Queries or Filters), and use the Add method, a general
method for adding an item to any collection.

Each procedure in this set of exercises builds on the first, adding several lines
for each new exercise. The added lines are set off in bold font, and explained
below. This exercise defines a query and displays the SQL generated by the
MetaCube analysis engine in a message box. This exercise does not issue that
SQL to the database.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()
MetaCube in Thirteen Lessons: An API Tutorial 2-7

MetaCube in Thirteen Lessons: An API Tutorial
3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 MyQuery As Object
7 Const MyFirstAttribute = “Brand”
8 Const MyMeasure = “Units Sold”

9 'Instantiate Metabase: Log in to RDBMS, Open DSS System
10 'Instantiate a Metabase object
11 Set MyMetabase = CreateObject("Metabase")

12 'Identify an ODBC data source
13 Let MyMetabase.ConnectString = "Metademo"

14 'Specify a set of metadata
15 Let MyMetabase.Name = "MetaCube Demo"

16 'Specify login to database
17 Let MyMetabase.Login = "Metademo"
18 'Passes value to database on connection

19 'Specify database password
20 Let MyMetabase.Password = "Metademo"

21 'Log in to demonstration database, open DSS System
22 MyMetabase.Connect

23 'Define the Query
24 Set MyQuery = MyMetabase.Queries.Add("A New Query")
25 'Adds query to MyMetabase’s collection of queries

26 MyQuery.QueryCategories.Add MyFirstAttribute

27 'Add measure to MyQuery’s collection of measures
28 MyQuery.QueryItems.Add MyMeasure

29 'Display Query Definition
30 MsgBox MyQuery.SQL
31 'MetaCube generates SQL for query prior to execution

32 End Sub

Explanation of MetaCube API Exercise 2

We begin this exercise by declaring a second object variable, “MyQuery,” in
line 6, which subsequently stores the newly-added instance of the Query
class of objects. Please note that you can declare variables in a list, demar-
cating each new variable by a comma and individually specifying the type of
each.
2-8 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
In anticipation of the arguments necessary to define our query, we also
declare two constants in lines 7 and 8, using the syntax “Const,” followed by
the name of the constant, the operator “=,” and the value it stores. One
constant specifies a measure defined in the metadata, the other specifies an
attribute defined in the metadata. If, within a DSS system, a measure name is
repeated in another fact table, or if an attribute name is repeated across
dimensions, you must provide a more specific definition of that component,
identifying the exact measure or attribute desired, as described in “Scoping
Rules” on page 14-3. Although we could specify the attribute and measure
names directly in the query definition, declaring constants in a single location
allows us to easily change our query definition.

Lines 9 through 22 connect MetaCube to the relational database, as discussed
in MetaCube API Exercise 1 on page 2-4.

Lines 24 to 28 define a query by a single attribute and a single measure.
Measures represent different types of numeric data associated with a trans-
action and corresponds to the “how much” component of a query. Attributes
represent different ways of grouping those measures and correspond to the
“what, when, and where” components of a query. Every query that retrieves
numeric data must be defined by at least one attribute and one measure. An
attribute is incorporated into a procedure as a QueryCategory, and a measure
is incorporated into a query as a QueryItem. This section of the procedure
defines a query requesting sales, grouped by brand, where “Units Sold” is the
measure, and “Brand” is the attribute.

To define a query, we must instantiate an object of the Query class. Each
Query object belongs to a collection of Query objects, all of which descend
from an instance of the Metabase class of objects. To instantiate a Query
object, we must identify a particular Metabase object’s query collection, and
deploy the general Add method, as shown on line 24.

The name of the query appears as an argument at the end of this command.
We enclose the argument in parentheses because we are returning this
instance of the Query class of objects to an object variable, and functions
require all arguments to be enclosed in parentheses. In Explorer, new queries
are given such names as “Untitled1” until a user saves the query under a
different name. Please note, however, that this application does not recognize
your Query object by this name. This instance of the Query class of objects is
stored in the object variable “MyQuery.”
MetaCube in Thirteen Lessons: An API Tutorial 2-9

MetaCube in Thirteen Lessons: An API Tutorial
Lines 26 and 28 refer to the “MyQuery” object variable as the parent of
several collections. As shown in Figure 1-1 on page 1-9, each Query object
owns collections of QueryCategory, QueryItem, Filter and MetaCube objects,
which represent, respectively, attributes, measures, filters and reports. To
generate SQL for a standard query, you must include at least one QueryCat-
egory in a Query object’s collection of QueryCategories, and one QueryItem
in a Query object’s collection of QueryItems.

Such collections are, of course, initially empty. Line 26 specifies MyQuery’s
collection of QueryCategories, instantiating a QueryCategory object repre-
senting the “Brand” attribute within that collection. The name of the attribute
appears as an argument at the end of this command. For MetaCube to under-
stand this argument, we must have created metadata for the attribute of that
name, describing which tables and columns correspond to this attribute. The
same is true of measures, filters, and other logical objects.

Note that this instance of the QueryCategory object is not stored in an object
variable, and any subsequent references to this object will identify this object
by name or by index number as an item within the collection of QueryCate-
gories owned by MyQuery. Because this command does not return a value,
the constant representing the name of the attribute should not be enclosed in
parentheses.

Line 28 identifies the measure included in this query definition, adding a
QueryItem object to MyQuery’s collection of QueryItems. The name of the
measure, as specified in your metadata, appears as an argument at the end of
the command. A constant, “MyMeasure,” stores the name of the measure,
“Units Sold.”

If you had mapped this measure to more than one fact table/data source, you
would have included the name of the fact table when specifying the measure:
“Sales Transactions.Units Sold.” If the measure corresponds to only one fact
table, such specificity is unnecessary.

As was the case when instantiating a QueryCategory object, no variable
stores this instance of the QueryItem class of objects and, consequently, we
do not enclose this command’s arguments in parentheses.

Once we have satisfied the minimum requirements for a query definition, we
can view the SQL commands MetaCube would generate to retrieve the data
requested by the query from the relational database. Line 30 invokes the SQL
property of the Query class of objects, which stores as a string the SQL
generated for the query represented by MyQuery.
2-10 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
The Visual Basic for Applications MsgBox function displays this string
expression in a dialog box. Please note that, as a query’s definition becomes
more complex, the MsgBox may not be able to contain the entire set of SQL
commands generated for the query, and the definition will be cut off. A
MsgBox cannot contain more than 1,024 characters, although the exact limit
depends in large part on the width of the characters.

Once your application displays the SQL generated by the query, the appli-
cation terminates on line 28. The next exercise executes the SQL on the
relational database.

MetaCube API Exercise 3: Executing the Query, Displaying
the Results
In this exercise, we execute the query defined in the previous exercise using
the ToVBArray method and display the results using Excel’s Range object.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 MyQuery As Object, _
7 MyMetaCube As Object

8 'Excel Variables
9 Dim ReportRange As Range

10 'Other Variables
11 Dim MyData As Variant

12 Const MyFirst Attribute = “Brand”
13 Const MyMeasure = “Units Sold”

14 'Instantiate Metabase: Log in to RDBMS, Open DSS System
15 'Instantiate a Metabase object
16 Set MyMetabase = CreateObject("Metabase")

17 'Identify an ODBC data source
18 Let MyMetabase.ConnectString = "Metademo"

19 'Specify a set of metadata
20 Let MyMetabase.Name = "MetaCube Demo"

21 'Specify login to database
22 Let MyMetabase.Login = "Metademo"
23 'Passes value to database on connection
MetaCube in Thirteen Lessons: An API Tutorial 2-11

MetaCube in Thirteen Lessons: An API Tutorial
24 'Specify database password
25 Let MyMetabase.Password = "Metademo"

26 'Log in to demonstration database, open DSS System
27 MyMetabase.Connect

28 'Define the Query
29 Set MyQuery = MyMetabase.Queries.Add("A New Query")
30 'Adds query to MyMetabase’s collection of queries

31 MyQuery.QueryCategories.Add MyFirstAttribute

32 'Add measure to MyQuery’s collection of measures
33 MyQuery.QueryItems.Add MyMeasure

34 'Display Query Definition
35 MsgBox MyQuery.SQL
36 'MetaCube generates SQL for query prior to execution

37 'Get Query Results, Define Report
38 'Add cube to MyQuery’s cube collection
39 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

40 'Format data as an array VB can display, store in variable
41 Let MyData = MyMetaCube.ToVBArray
42 'The ToVBArray method implicitly requires MetaCube
43 'to execute the query on the relational database

44 'Clear "Query Report" Worksheet
45 Sheets("Query Report").Activate
46 Cells.Select
47 Selection.ClearContents

48 'Excel Code: Defines Range of Cells, Presents Data
49 Worksheets.Item("Query Report").Activate
50 Set ReportRange = _
51 ActiveSheet.Range _
52 (ActiveSheet.Cells(1, 1), _
53 ActiveSheet.Cells _
54 (MyMetaCube.Rows, MyMetaCube.Columns))
55 Let ReportRange.Value = MyData
56 ReportRange.EntireColumn.AutoFit 'Sizes columns

57 End Sub

Explanation of MetaCube API Exercise 3

This exercise executes the query defined in the previous exercise and displays
the data in an Excel spreadsheet named “Query Report.” If you have not
identified a sheet in your active workbook by this name, follow the procedure
outlined on “Renaming Worksheets and Macro Modules” on page 1-18.
2-12 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
We begin this procedure by declaring three new variables in lines 7 through
13: MyMetaCube, MyData, and ReportRange. The MyMetaCube variable
stores an instance of the MetaCube class of objects that represents a particular
configuration for the data retrieved from the relational database. The MyData
variable stores the data retrieved from the query in a two-dimensional
variant array that Excel can display in a spreadsheet. The ReportRange
variable is a special Excel-type variable that represents the range of cells in a
spreadsheet that MetaCube requires to display the data.

To bypass the cumbersome task of declaring object variables, you can insert
a file from the MetaCube library of training materials. Simply open the
“M3_API.xls” workbook, select the tab labeled “Exercise #3,” and copy into
your program the appropriate variable declarations.

Lines 14 to 27 establish a multi-dimensional connection to the relational
database, and lines 28 to 37 define and display the query definition, as
explained above. Line 39 instantiates a MetaCube object, which we compared
in previous explanations to a report. More precisely, the MetaCube object
represents the result set of a query, stored on the client as a virtual cube, on
which you can readily perform operations. A Query object can own a
collection of MetaCube objects, each defined to represent a query’s data in a
different format.

We instantiate a MetaCube object using syntax similar to the commands for
instantiating QueryCategory and QueryItem objects, as discussed in the
previous example. After identifying the collection of MetaCube objects
belonging to MyQuery, we can add a new instance of a MetaCube object to
this collection, passing as an argument a name for this virtual cube of data.
This name does not refer in any way to MetaCube’s metadata; like the query
name argument, a MetaCube object’s name is simply another way of distin-
guishing an item in a collection. Because we will perform many operations
on this virtual cube of data, we store this instantiation of the MetaCube object
class in the object variable MyMetaCube. The command returns a value to an
object variable and thus executes a function. Accordingly, the argument is
enclosed in parentheses.

Instantiating the MetaCube object does not automatically execute the query
on the relational database. To avoid premature execution of the query and to
minimize client-server calls, MetaCube does not execute the query until the
client application instructs MetaCube to perform some operation on the data.
To explicitly command MetaCube to execute a query, use the Retrieve
method of the Query class of objects.
MetaCube in Thirteen Lessons: An API Tutorial 2-13

MetaCube in Thirteen Lessons: An API Tutorial
Line 41, which invokes the ToVBArray method of the MetaCube class of
objects, converts the data represented by the virtual cube to an array, a
function that can only be performed when the data has actually been
returned to the client. For this reason, the ToVBArray method implicitly
requires MetaCube to execute the query defined in lines 28 to 33. The variant
variable MyData stores this data, automatically becoming an array variable
of the appropriate dimensions. Note that the “Let” syntax, though always
unnecessary, is included throughout these exercises to emphasize the
distinction between object variables and variables of other types.

Lines 45 to 56 activate a worksheet, define a range of cells into which you can
import the array of data stored by the MyData variable, and assign the data
in MyData to that range. The final line of this section adjusts the width of the
report’s columns so that none of the cells in the report are truncated. As most
of the code in this section corresponds to Excel rather than the MetaCube
programming interface, you can copy this section of code from the “Exercise
#3” worksheet in the M3_API.xls workbook, which is located in the exercises
subdirectory of your MetaCube directory.

The only syntax of particular interest to the MetaCube developer in this
section is the continuation of line 50, which extends to line 54. Here, the Rows
and Columns properties of the MetaCube class of objects, which represent
the number of rows and columns in the data within the cube, delineate the
range of cells to reserve for the report. Please note that, insofar as both
properties depend on the nature and amount of data retrieved, both can
require MetaCube to execute a query. In this case, however, the ToVBArray
method on line 41 already triggered the query’s execution.
2-14 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
MetaCube API Exercise 4: Filtering the Query
In this exercise we deploy the Filter object to limit the range of data retrieved
by the query.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object

9 'Excel Variables
10 Dim ReportRange As Range

11 'Other Variables
12 Dim MyData As Variant

13 Const MyFirst Attribute = “Brand”
14 Const MyMeasure = “Units Sold”
15 Const MySavedFilter = “Boston”

16 'Instantiate Metabase: Log in to RDBMS, Open DSS System
17 'Instantiate a Metabase object
18 Set MyMetabase = CreateObject("Metabase")

19 'Identify an ODBC data source
20 Let MyMetabase.ConnectString = "Metademo"

21 'Specify a set of metadata
22 Let MyMetabase.Name = "MetaCube Demo"

23 'Specify login to database
24 Let MyMetabase.Login = "Metademo"
25 'Passes value to database on connection

26 'Specify database password
27 Let MyMetabase.Password = "Metademo"

28 'Log in to demonstration database, open DSS System
29 MyMetabase.Connect

30 'Identify folder containing filters
31 Set FilterFolder = MyMetabase.RootFolder. _
32 Folders.Item(“Public Filters”)

33 'Define the Query
34 Set MyQuery = MyMetabase.Queries.Add("A New Query")
35 'Adds query to MyMetabase’s collection of queries
MetaCube in Thirteen Lessons: An API Tutorial 2-15

MetaCube in Thirteen Lessons: An API Tutorial
36 MyQuery.QueryCategories.Add MyFirstAttribute
37 'Add measure to MyQuery’s collection of measures
38 MyQuery.QueryItems.Add MyMeasure

39 'Apply filter: specify filter name, who saved, and folder
40 MyQuery.Filters.AddSaved _
41 MySavedFilter, “metapub”, FilterFolder

42 'Display Query Definition
43 MsgBox MyQuery.SQL
44 'MetaCube generates SQL for query prior to execution

45 'Get Query Results, Define Report
46 'Add cube to MyQuery’s cube collection
47 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

48 'Format data as an array VB can display, store in variable
49 Let MyData = MyMetaCube.ToVBArray
50 'The ToVBArray method implicitly requires MetaCube
51 'to execute the query on the relational database

52 'Clear "Query Report" Worksheet
53 Sheets("Query Report").Activate
54 Cells.Select
55 Selection.ClearContents

56 'Excel Code: Defines Range of Cells, Presents Data
57 Worksheets.Item("Query Report").Activate
58 Set ReportRange = _
59 ActiveSheet.Range _
60 (ActiveSheet.Cells(1, 1), _
61 ActiveSheet.Cells _
62 (MyMetaCube.Rows, MyMetaCube.Columns))
63 Let ReportRange.Value = MyData
64 ReportRange.EntireColumn.AutoFit 'Sizes columns

65 End Sub

Explanation of MetaCube API Exercise 4

This exercise applies a saved filter to the previously defined query, limiting
the range of data retrieved to two four-week periods. Previously, the query
had been completely unfiltered, returning brand sales for all dates recorded
in the demonstration database. Now the query only returns the most recent
thirteen weeks of brand sales. The format of the resulting report remains the
same, but the numeric values within the report decrease, since the sales for
all time are necessarily less than the sales for thirteen weeks.
2-16 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Please note that, although Explorer and MetaCube for Excel require you to
filter on time, such requirements are artificially imposed by these applica-
tions to prevent users from issuing unconstrained queries. The MetaCube
engine allows you to submit for execution any query defined by valid
measures, attributes, or even dimension elements.

The definitions of saved filters are stored in MetaCube’s metadata. To access
a saved filter, you must correctly identify the name of a filter associated with
the DSS System you have opened, as well as the user name and folder under
which that filter was saved. Security measures that prevent users of Explorer
and MetaCube for Excel from accessing filters saved by other users do not
apply, as this requirement too, is imposed by the application.

Line 15 declares a constant, “MySavedFilter,” which identifies the name of
the filter saved in the metadata as “Boston.” This pre-defined, public filter
installs with the demonstration database, limiting the data retrieved to the
thirteen most current weeks recorded therein.

To access this filter in the demonstration database, we must identify the
folder with which the Filter object is associated. MetaCube features a hierar-
chical folder interface for Query and Filter objects stored in the metadata
tables of the relational database. Folders are descended from the RootFolder
object, which is itself owned directly by the Metabase object. Each folder can,
in turn, own sub-folders. Lines 31 and 32 store the “Public Filters” folder in
the FilterFolder object variable. For a full description of folder functionality,
see “The Folder Class of Objects” on page 7-3.

The procedure executes as before until line 40, which instantiates a Filter
object as a member of MyQuery’s collection of Filters. As illustrated in Figure
1-1 on page 1-9, each Filter object belongs to a collection owned by a
particular Query object.

Each collection of Filter objects can consist of both new filters and saved
filters. For this reason, you must specify one of two methods to instantiate a
Filter object: AddSaved or AddNew. Instantiating a new Filter object with the
AddNew method requires you to subsequently define the filter’s
components.
MetaCube in Thirteen Lessons: An API Tutorial 2-17

MetaCube in Thirteen Lessons: An API Tutorial
The AddSaved method simply requires three arguments, the name of the
filter, the user who created the filter, and the folder under which it was saved.
Each Metabase object owns a RootFolder, which in turn can own a collection
of subdirectories or folders, providing a hierarchical interface for logical
objects stored in MetaCube’s metadata. For more information about folders,
see “The Folder Class of Objects” on page 7-3. In this case, “MySavedFilter,”
represents the name of the saved filter, “metapub” identifies the user who
defined this filter originally, and the RootFolder object, included here as an
argument, indicates that the filter was originally saved in the root folder.

MetaCube API Exercise 5: Building A More Sophisticated
Query, Pivoting
This exercise adds two attributes to the query’s definition, displaying each
value of one of the attributes in a separate column rather than in a separate
row, as before.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range

14 'Other Variables
15 Dim MyData As Variant

16 Const OrientationColumn = 2
17 Const MyFirstAttribute = “Brand”
18 Const MySecondAttribute = “Region”
19 Const MyThirdAttribute = “Fiscal Week”
20 Const MyMeasure = “Units Sold”
21 Const MySavedFilter = “Boston”

22 'Instantiate Metabase: Log in to RDBMS, Open DSS System
23 'Instantiate a Metabase object
24 Set MyMetabase = CreateObject("Metabase")
2-18 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
25 'Identify an ODBC data source
26 Let MyMetabase.ConnectString = "Metademo"

27 'Specify a set of metadata
28 Let MyMetabase.Name = "MetaCube Demo"

29 'Specify login to database
30 Let MyMetabase.Login = "Metademo"
31 'Passes value to database on connection

32 'Specify database password
33 Let MyMetabase.Password = "Metademo"

34 'Log in to demonstration database, open DSS System
35 MyMetabase.Connect
36 'Identify folder containing filters
37 Set FilterFolder = MyMetabase.RootFolder. _
38 Folders.Item(“Public Filters”)

39 'Define the Query
40 Set MyQuery = MyMetabase.Queries.Add("A New Query")
41 'Adds query to MyMetabase’s collection of queries

42 Set MySummaryCategory = _
43 MyQuery.QueryCategories.Add(MyFirst Attribute)

44 Set MySortCategory = MyQuery.QueryCategories.Add _
45 (MySecondAttribute)

46 Set MyPivotCategory = _
47 MyQuery.QueryCategories.Add(MyThirdAttribute)
48 'Pivot this attribute to the column orientation
49 Let MyPivotCategory.Orientation = OrientationColumn

50 'Add measure to MyQuery’s collection of measures
51 MyQuery.QueryItems.Add MyMeasure

52 'Apply filter: specify filter name, who saved, and folder
53 MyQuery.Filters.AddSaved _
54 MySavedFilter, “metapub”, FilterFolder

55 'Display Query Definition
56 MsgBox MyQuery.SQL
57 'MetaCube generates SQL for query prior to execution

58 'Get Query Results, Define Report
59 'Add cube to MyQuery’s cube collection
60 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

61 'Format data as an array VB can display, store in variable
62 Let MyData = MyMetaCube.ToVBArray
63 'The ToVBArray method implicitly requires MetaCube
64 'to execute the query on the relational database
MetaCube in Thirteen Lessons: An API Tutorial 2-19

MetaCube in Thirteen Lessons: An API Tutorial
65 'Clear "Query Report" Worksheet
66 Sheets("Query Report").Activate
67 Cells.Select
68 Selection.ClearContents

69 'Excel Code: Defines Range of Cells, Presents Data
70 Worksheets.Item("Query Report").Activate
71 Set ReportRange = _
72 ActiveSheet.Range _
73 (ActiveSheet.Cells(1, 1), _
74 ActiveSheet.Cells _
75 (MyMetaCube.Rows, MyMetaCube.Columns))
76 Let ReportRange.Value = MyData
77 ReportRange.EntireColumn.AutoFit 'Sizes columns

78 End Sub

Explanation of MetaCube API Exercise 5

In this procedure we add two attributes to our query definition, one of which
is pivoted to columns. Each value of an attribute organized by columns
defines a separate column in the resulting report. By default, all attributes are
organized by rows.

As always, we begin by declaring any new variables and constants. Because
we will perform subsequent operations on both the existing QueryCategory
object as well the newly instantiated QueryCategory objects, it is convenient
to store each instantiation in a new object variable, declared as MySummary-
Category, MySortCategory, and MyPivotCategory in lines 9 through 11. In
lines 18 and 19, we declare two additional constants, both of which refer to
attributes defined in MetaCube’s metadata. As before, declaring constants
allows us to change one of the parameters of a query simply by changing the
constant declaration, as opposed to replacing every reference to that attribute
in the code that follows.

Line 16 also declares a constant, but for a different reason. Many MetaCube
commands require numeric arguments whose significance, while fully
documented in this reference, are not immediately clear. Substituting an
aptly-named constant for the rather cryptic numeric argument can render
your code more readable, and easier to debug. In this exercise, a numeric
argument, 2, specifies an orientation by columns, which we substitute with
the constant, “OrientationColumn” whenever the argument is called for.
2-20 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
A complete list of this and similar constant declarations is provided in the
file, “METACONS.BAS,” which installs in your MetaCube directory.
Constant declarations for C++ developers can be found in “METACONS.H,”
in the same directory. The names of these constants are included in all
documentation references to MetaCube’s numeric arguments. The set of
constant and variable declarations for this particular exercise can be copied
from the tab labeled “Exercise #5” in the M3_API.xls workbook.

Line 42 modifies the code instantiating the first QueryCategory, now storing
the object in the object variable MySummaryCategory. As a consequence of
returning a value to an object variable, the argument for this QueryCategory
must be enclosed in parentheses. Lines 44 through 47 add a second and a
third attribute to the query definition, instantiating QueryCategory objects in
exactly the same manner as MySummaryCategory.

As defined, the query now consists of three attributes: Brand, Region, and
Fiscal Week, all of which would normally be organized in rows and sub-
rows, depending on their order of instantiation.

To organize an attribute by columns, we must assign a numeric value to the
Orientation property of the QueryCategory object, as shown on line 49.
Assigning a new value to the Orientation property of the QueryCategory
object after the query has processed would require us to instantiate a new
MetaCube object, but does involve re-querying the database. The value
assigned to the Orientation property specifies the configuration of the Query-
Category, where 2 corresponds to pivoting by column, and 3 by page. In this
example, the constant OrientationColumn substitutes for 2, an argument that
is practically indecipherable without a reference. The resulting report will
display, by default, brands and regions in rows, and weeks in columns. In an
upcoming exercise, we compare each column of data with its predecessor,
calculating the difference between the two.
MetaCube in Thirteen Lessons: An API Tutorial 2-21

MetaCube in Thirteen Lessons: An API Tutorial
MetaCube API Exercise 6: Sorting by an Attribute
In this exercise we organize the values of an attribute in reverse-alphabetical
order.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range

14 'Other Variables
15 Dim MyData As Variant

16 Const OrientationColumn = 2
17 Const SortDirectionDesc = 2

18 Const MyFirstAttribute = “Brand”
19 Const MySecondAttribute = “Region”
20 Const MyThirdAttribute = “Fiscal Week”
21 Const MyMeasure = “Units Sold”
22 Const MySavedFilter = “Boston”

23 'Instantiate Metabase: Log in to RDBMS, Open DSS System
24 'Instantiate a Metabase object
25 Set MyMetabase = CreateObject("Metabase")

26 'Identify an ODBC data source
27 Let MyMetabase.ConnectString = "Metademo"

28 'Specify a set of metadata
29 Let MyMetabase.Name = "MetaCube Demo"

30 'Specify login to database
31 Let MyMetabase.Login = "Metademo"
32 'Passes value to database on connection

33 'Specify database password
34 Let MyMetabase.Password = "Metademo"

35 'Log in to demonstration database, open DSS System
36 MyMetabase.Connect
2-22 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
37 'Identify folder containing filters
38 Set FilterFolder = MyMetabase.RootFolder. _
39 Folders.Item(“Public Filters”)

40 'Define the Query
41 Set MyQuery = MyMetabase.Queries.Add("A New Query")
42 'Adds query to MyMetabase’s collection of queries

43 Set MySummaryCategory = _
44 MyQuery.QueryCategories.Add(MyFirst Attribute)

45 Set MySortCategory = MyQuery.QueryCategories.Add _
46 (MySecondAttribute)
47 'Sort attribute values in reverse-alphabetical order
48 Let MySortCategory.SortDirection = _
49 SortDirectionDesc

50 Set MyPivotCategory = _
51 MyQuery.QueryCategories.Add(MyThirdAttribute)
52 'Pivot this attribute to the column orientation
53 Let MyPivotCategory.Orientation = OrientationColumn

54 'Add measure to MyQuery’s collection of measures
55 MyQuery.QueryItems.Add MyMeasure

56 'Apply filter: specify filter name, who saved, and folder
57 MyQuery.Filters.AddSaved _
58 MySavedFilter, “metapub”, FilterFolder

59 'Display Query Definition
60 MsgBox MyQuery.SQL
61 'MetaCube generates SQL for query prior to execution

62 'Get Query Results, Define Report
63 'Add cube to MyQuery’s cube collection
64 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

65 'Format data as an array VB can display, store in variable
66 Let MyData = MyMetaCube.ToVBArray
67 'The ToVBArray method implicitly requires MetaCube
68 'to execute the query on the relational database

69 'Clear "Query Report" Worksheet
70 Sheets("Query Report").Activate
71 Cells.Select
72 Selection.ClearContents
MetaCube in Thirteen Lessons: An API Tutorial 2-23

MetaCube in Thirteen Lessons: An API Tutorial
73 'Excel Code: Defines Range of Cells, Presents Data
74 Worksheets.Item("Query Report").Activate
75 Set ReportRange = _
76 ActiveSheet.Range _
77 (ActiveSheet.Cells(1, 1), _
78 ActiveSheet.Cells _
79 (MyMetaCube.Rows, MyMetaCube.Columns))
80 Let ReportRange.Value = MyData
81 ReportRange.EntireColumn.AutoFit 'Sizes columns

82 End Sub

Explanation of MetaCube API Exercise 6

Sorting allows you to set the order in which the values of an attribute or a
measure appear in a report. MetaCube can sort string values alphabetically
and numbers from large to small, or vice-versa. By default a report is sorted
by the values of the attributes organized in rows and columns, in ascending
order. Attributes organized by sub-rows and sub-columns are sorted after
attributes organized by rows and columns are sorted, and only within each
grouping.

Because each record consists of both attributes and measures, you cannot
simultaneously sort on attributes organized by row and on measures.
MetaCube automatically sorts attributes organized by row in ascending
order and does not sort measures by default. Any sort which you apply on
measures is likely to change the format of the report.

You can reverse the order of a sort on a QueryCategory by changing the value
of that object’s SortDirection property. To sort on a column of numeric data
in a report, you must assign a value to the SortColumn property of the
MetaCube object, as documented in “Sorting: SortDirection and SortColumn
Property” on page 8-49.

As a substitute for the cryptic values stored by both properties, we declare an
intuitively-named constant in line 17, SortDirectionDesc, assigning it a value
of 2 for a descending sort. As before, this constant declaration could have
been taken from the “METACONS.BAS” file in your MetaCube directory.

Lines 25 through 36 establish a multi-dimensional connection to the
relational database, as before. As we define the query in the ensuing section,
we append lines 48 and 49, in which we assign the value represented by the
SortDirectionDesc constant to the SortDirection property of MySortCategory.
2-24 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Since SortDirectionDesc equals 2, MetaCube will arrange the values of the
Region attribute in a descending order, that is, reverse-alphabetically.

MetaCube API Exercise 7: Calculating Absolute Change
In this exercise, we add a calculated measure to the query definition,
displaying the difference between every two columns of raw data in an inter-
polated column. The function for calculating the difference between the two
columns is drawn from the main MetaCube snap-in or extension, MCPlgMn,
which the MetaCube installation program enables, rendering it available in
all application development environments. See “The Extension Class of
Objects” on page 5-3 for more details on extensions.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range

14 'Other Variables
15 Dim MyData As Variant

16 Const OrientationColumn = 2
17 Const SortDirectionDesc = 2

18 Const MyFirstAttribute = “Brand”
19 Const MySecondAttribute = “Region”
20 Const MyThirdAttribute = “Fiscal Week”
21 Const MyMeasure = “Units Sold”
22 Const MySavedFilter = “Boston”

23 'Instantiate Metabase: Log in to RDBMS, Open DSS System
24 'Instantiate a Metabase object
25 Set MyMetabase = CreateObject("Metabase")

26 'Identify an ODBC data source
27 Let MyMetabase.ConnectString = "Metademo"
MetaCube in Thirteen Lessons: An API Tutorial 2-25

MetaCube in Thirteen Lessons: An API Tutorial
28 'Specify a set of metadata
29 Let MyMetabase.Name = "MetaCube Demo"

30 'Specify login to database
31 Let MyMetabase.Login = "Metademo"
32 'Passes value to database on connection

33 'Specify database password
34 Let MyMetabase.Password = "Metademo"

35 'Log in to demonstration database, open DSS System
36 MyMetabase.Connect

37 'Identify folder containing filters
38 Set FilterFolder = MyMetabase.RootFolder. _
39 Folders.Item(“Public Filters”)

40 'Define the Query
41 Set MyQuery = MyMetabase.Queries.Add("A New Query")
42 'Adds query to MyMetabase’s collection of queries

43 Set MySummaryCategory = _
44 MyQuery.QueryCategories.Add(MyFirst Attribute)

45 Set MySortCategory = MyQuery.QueryCategories.Add _
46 (MySecondAttribute)
47 'Sort attribute values in reverse-alphabetical order
48 Let MySortCategory.SortDirection = _
49 SortDirectionDesc

50 Set MyPivotCategory = _
51 MyQuery.QueryCategories.Add(MyThirdAttribute)
52 'Pivot this attribute to the column orientation
53 Let MyPivotCategory.Orientation = OrientationColumn

54 'Add measure to MyQuery’s collection of measures
55 MyQuery.QueryItems.Add MyMeasure

56 'Add second measure, on which to perform calculation
57 MyQuery.QueryItems.Add _
58 “Abs_Change (" + MyMeasure + ")"

59 'Apply filter: specify filter name, who saved, and folder
60 MyQuery.Filters.AddSaved _
61 MySavedFilter, “metapub”, FilterFolder

62 'Display Query Definition
63 MsgBox MyQuery.SQL
64 'MetaCube generates SQL for query prior to execution

65 'Get Query Results, Define Report
66 'Add cube to MyQuery’s cube collection
67 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")
2-26 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
68 'Format data as an array VB can display, store in variable
69 Let MyData = MyMetaCube.ToVBArray
70 'The ToVBArray method implicitly requires MetaCube
71 'to execute the query on the relational database

72 'Clear "Query Report" Worksheet
73 Sheets("Query Report").Activate
74 Cells.Select
75 Selection.ClearContents

76 'Excel Code: Defines Range of Cells, Presents Data
77 Worksheets.Item("Query Report").Activate
78 Set ReportRange = _
79 ActiveSheet.Range _
80 (ActiveSheet.Cells(1, 1), _
81 ActiveSheet.Cells _
82 (MyMetaCube.Rows, MyMetaCube.Columns))
83 Let ReportRange.Value = MyData
84 ReportRange.EntireColumn.AutoFit 'Sizes columns

85 End Sub

Explanation of MetaCube API Exercise 7

MetaCube supports sophisticated comparison calculations, such as percent
of total, moving averages and quantiles. In this procedure, MetaCube
evaluates the difference in sales from one week to the next. For each column
of raw data in our report the difference between that column and the
preceding column of raw data is calculated and displayed in an interpolated
third column.

The syntax for each calculation varies from function to function, depending
on the number of arguments required by that function. Because the function
itself returns values that MetaCube incorporates into the result as a
QueryItem, we enclose the entire expression in quotation marks, and the
arguments required by the function in parentheses, as shown on lines 57 and
58. The plus symbols are required to concatenate the constant name with the
rest of the string expression.

The only argument required by the absolute change function is the measure
on which the calculation is performed. This function evaluates data as it
changes from column to column. Other functions operate on data as it
changes from row to row.
MetaCube in Thirteen Lessons: An API Tutorial 2-27

MetaCube in Thirteen Lessons: An API Tutorial
Please note that we could have based the calculation on a measure otherwise
excluded from the report, displaying the number of Units Sold each week, as
well the change in Gross Revenues or Incurred Costs from week to week.
Such calculations prompt MetaCube to generate SQL that retrieves from the
database the numeric necessary to perform the calculation, while only
displaying the result of that calculation.

While most calculations are performed by functions included in MetaCube’s
main extension, the Summary object performs subtotals and other similar
calculations. Subtotals are the subject of MetaCube API Exercise 8.

MetaCube API Exercise 8: Subtotals
In this exercise we deploy the Summary object to calculate subtotals in a
report.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range

14 'Other Variables
15 Dim MyData As Variant

16 Const OrientationColumn = 2
17 Const SortDirectionDesc = 2
18 Const SummaryTotal = 1
19 Const MyFirstAttribute = “Brand”
20 Const MySecondAttribute = “Region”
21 Const MyThirdAttribute = “Fiscal Week”
22 Const MyMeasure = “Units Sold”
23 Const MySavedFilter = “Boston”

24 'Instantiate Metabase: Log in to RDBMS, Open DSS System
25 'Instantiate a Metabase object
26 Set MyMetabase = CreateObject("Metabase")
2-28 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
27 'Identify an ODBC data source
28 Let MyMetabase.ConnectString = "Metademo"

29 'Specify a set of metadata
30 Let MyMetabase.Name = "MetaCube Demo"

31 'Specify login to database
32 Let MyMetabase.Login = "Metademo"
33 'Passes value to database on connection

34 'Specify database password
35 Let MyMetabase.Password = "Metademo"

36 'Log in to demonstration database, open DSS System
37 MyMetabase.Connect

38 'Identify folder containing filters
39 Set FilterFolder = MyMetabase.RootFolder. _
40 Folders.Item(“Public Filters”)

41 'Define the Query
42 Set MyQuery = MyMetabase.Queries.Add("A New Query")
43 'Adds query to MyMetabase’s collection of queries

44 Set MySummaryCategory = _
45 MyQuery.QueryCategories.Add(MyFirst Attribute)

46 Set MySortCategory = MyQuery.QueryCategories.Add _
47 (MySecondAttribute)
48 'Sort attribute values in reverse-alphabetical order
49 Let MySortCategory.SortDirection = _
50 SortDirectionDesc

51 Set MyPivotCategory = _
52 MyQuery.QueryCategories.Add(MyThirdAttribute)
53 'Pivot this attribute to the column orientation
54 Let MyPivotCategory.Orientation = OrientationColumn

55 'Add measure to MyQuery’s collection of measures
56 MyQuery.QueryItems.Add MyMeasure

57 'Add second measure, on which to perform calculation
58 MyQuery.QueryItems.Add _
59 “Abs_Change (“ + MyMeasure + “)”

60 'Apply filter: specify filter name, who saved, and folder
61 MyQuery.Filters.AddSaved _
62 MySavedFilter, “metapub”, FilterFolder

63 'Display Query Definition
64 MsgBox MyQuery.SQL
65 'MetaCube generates SQL for query prior to execution
MetaCube in Thirteen Lessons: An API Tutorial 2-29

MetaCube in Thirteen Lessons: An API Tutorial
66 'Get Query Results, Define Report
67 'Add cube to MyQuery’s cube collection
68 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

69 'Subtotal: Regional sales for each brand
70 MyMetaCube.Summaries.Add _
71 MySummaryCategory, SummaryTotal

72 'Format data as an array VB can display, store in variable
73 Let MyData = MyMetaCube.ToVBArray
74 'The ToVBArray method implicitly requires MetaCube
75 'to execute the query on the relational database

76 'Clear "Query Report" Worksheet
77 Sheets("Query Report").Activate
78 Cells.Select
79 Selection.ClearContents

80 'Excel Code: Defines Range of Cells, Presents Data
81 Worksheets.Item("Query Report").Activate
82 Set ReportRange = _
83 ActiveSheet.Range _
84 (ActiveSheet.Cells(1, 1), _
85 ActiveSheet.Cells _
86 (MyMetaCube.Rows, MyMetaCube.Columns))
87 Let ReportRange.Value = MyData
88 ReportRange.EntireColumn.AutoFit 'Sizes columns

89 End Sub

Explanation of MetaCube API Exercise 8

MetaCube groups information by different attribute values, so you can
calculate subtotals for each grouping. In the report generated by our
procedure, MetaCube returns a record for each brand’s sales in each region,
grouping regional brand sales by brand. To calculate a brand’s total sales in
all regions, we simply sum every region’s brands sales for that particular
brand. In this case, we perform a subtotal by brand. For each brand,
MetaCube interpolates a row representing that brand’s total sales for all
regions.

The subtotal calculation is performed on an existing set of data by instanti-
ating an object within a collection belonging to the MetaCube object. For
subtotals, as well as for averages, minimums, maximums, and counts and
grand totals, we instantiate an object of the Summary class, which descends
from the MetaCube class of objects.
2-30 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Both the QueryCategory on which the calculation is performed and the type
of calculation to be performed depend on the arguments included in the
command instantiating the SummaryObject. On line 18, we declare a
constant, SummaryTotal, to store the numeric argument directing the
Summary object to calculate subtotals. Other arguments direct the object to
calculate averages, counts, minimums and maximums, both for each brand
and for the entire report. See Table 8-26 on page 8-70.

Lines 70 and 71 instantiate the Summary object, specifying MyMetaCube’s
collection of Summary objects, and deploying the general Add method. Two
arguments follow, the first identifying the QueryCategory object on which to
perform the calculation, the second indicating the type of calculation to
perform. Please note that the first argument requires you to specify the actual
QueryCategory object, rather than simply identifying the object by name. For
this reason, we store all QueryCategory objects in object variables.

We have now completed many of the standard query operations. Exercises
appearing in later sections of this manual demonstrate the programming
interface for more complex query operations such as buckets, comparisons,
multi-fact table queries, background query processing, and parameterized
filters. See in particular MetaCube API Exercise 16 on page 5-44, MetaCube
API Exercise 17 on page 6-25, and MetaCube API Exercise 21 on page 8-15.

The remainder of the tutorial discusses the construction of a simple query
interface for defining ad hoc queries.
MetaCube in Thirteen Lessons: An API Tutorial 2-31

MetaCube in Thirteen Lessons: An API Tutorial
MetaCube API Exercise 9: Building an Interface
In this exercise we populate several listboxes with the names of all the
attributes available for querying in the DSS System to which we have
connected.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range
14 MyListBox As ListBox

15 'Other Variables
16 Dim MyData As Variant
17 ArrayofItems As Variant, _
18 DimensionCount As Integer

19 Const OrientationColumn = 2
20 Const SortDirectionDesc = 2
21 Const SummaryTotal = 1
22 Const DisplayStyleQuery = 2

23 Const MyFirstAttribute = “Brand”
24 Const MySecondAttribute = “Region”
25 Const MyThirdAttribute = “Fiscal Week”
26 Const MyMeasure = “Units Sold”
27 Const MySavedFilter = “Boston”

28 'Instantiate Metabase: Log in to RDBMS, Open DSS System
29 'Instantiate a Metabase object
30 Set MyMetabase = CreateObject("Metabase")

31 'Identify an ODBC data source
32 Let MyMetabase.ConnectString = "Metademo"

33 'Specify a set of metadata
34 Let MyMetabase.Name = "MetaCube Demo"

35 'Specify login to database
36 Let MyMetabase.Login = "Metademo"
37 'Passes value to database on connection
2-32 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
38 'Specify database password
39 Let MyMetabase.Password = "Metademo"

40 'Log in to demonstration database, open DSS System
41 MyMetabase.Connect

42 'Identify folder containing filters
43 Set FilterFolder = MyMetabase.RootFolder. _
44 Folders.Item(“Public Filters”)

45 'Query Interface: Attributes
46 Worksheets.Item(“Define the Query”).Activate

47 'Cycle through DSS System’s dimension
48 For DimensionCount = 0 To _
49 MyMetabase.Dimensions, Count - 1

50 'Get array of attributes
51 Let ArrayofItems = _
52 MyMetabase.Dimensions.Item(DimensionCount) . _
53 AttributeNames(DisplayStyleQuery).ArrayValues

54 'Create listboxes
55 Set MyListBox = ActiveSheet.ListBoxes.Add _
56 ((DimensionCount * 80), 50, 70, 100)
57 'A listbox for each dimension, each further to right

58 'Populates each list box w/ attributes of a dimension
59 MyListBox.AddItem ArrayofItems

60 Next DimensionCount

61 'Define the Query
62 Set MyQuery = MyMetabase.Queries.Add("A New Query")
63 'Adds query to MyMetabase’s collection of queries

64 Set MySummaryCategory = _
65 MyQuery.QueryCategories.Add(MyFirst Attribute)

66 Set MySortCategory = MyQuery.QueryCategories.Add _
67 (MySecondAttribute)
68 'Sort attribute values in reverse-alphabetical order
69 Let MySortCategory.SortDirection = _
70 SortDirectionDesc

71 Set MyPivotCategory = _
72 MyQuery.QueryCategories.Add(MyThirdAttribute)
73 'Pivot this attribute to the column orientation
74 Let MyPivotCategory.Orientation = OrientationColumn

75 'Add measure to MyQuery’s collection of measures
76 MyQuery.QueryItems.Add MyMeasure
MetaCube in Thirteen Lessons: An API Tutorial 2-33

MetaCube in Thirteen Lessons: An API Tutorial
77 'Add second measure, on which to perform calculation
78 MyQuery.QueryItems.Add _
79 “Abs_Change (“ + MyMeasure + “)”

80 'Apply filter: specify filter name, who saved, and folder
81 MyQuery.Filters.AddSaved _
82 MySavedFilter, “metapub”, FilterFolder

83 'Display Query Definition
84 MsgBox MyQuery.SQL
85 'MetaCube generates SQL for query prior to execution

86 'Get Query Results, Define Report
87 'Add cube to MyQuery’s cube collection
88 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

89 'Subtotal: Regional sales for each brand
90 MyMetaCube.Summaries.Add _
91 MySummaryCategory, SummaryTotal

92 'Format data as an array VB can display, store in variable
93 Let MyData = MyMetaCube.ToVBArray
94 'The ToVBArray method implicitly requires MetaCube
95 'to execute the query on the relational database

96 'Clear "Query Report" Worksheet
97 Sheets("Query Report").Activate
98 Cells.Select
99 Selection.ClearContents

100 'Excel Code: Defines Range of Cells, Presents Data
101 Worksheets.Item("Query Report").Activate
102 Set ReportRange = _
103 ActiveSheet.Range _
104 (ActiveSheet.Cells(1, 1), _
105 ActiveSheet.Cells _
106 (MyMetaCube.Rows, MyMetaCube.Columns))
107 Let ReportRange.Value = MyData
108 ReportRange.EntireColumn.AutoFit 'Sizes columns

109 End Sub

Explanation of MetaCube API Exercise 9

This exercise and the two exercises that follow create a simple query
interface, displaying lists of available attributes, measures, and saved filters.
While we build this interface, our application will continue to execute the
query we defined in the previous exercises. Ultimately, however, we can
prompt the user to enter the names of attributes, measures, and filters to
define the query.
2-34 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
This exercise populates a set of listboxes with the attributes for each
dimension in the “MetaCube Demo” DSS System, the first step in building an
interface for designing a query. Building even a simple interface requires
extensive deployment of Excel-specific objects, properties, and methods. For
this reason, you may want to avail yourself of the code provided in the tab
labeled “Exercise #9” in the M3_API.xls workbook, installed in the exercises
subdirectory of your MetaCube directory. As we are primarily concerned
with understanding MetaCube’s programming interface and not Excel, our
treatment of this exercise will be somewhat cursory.

Lines 17 and 18 declare two variables, ArrayofItems and DimensionCount. In
this exercise, the ArrayofItems variant variable stores an array of attribute
names that MetaCube retrieves from the metadata and displays in a listbox
for each dimension. The DimensionCount integer serves as a counter in a
For... Next loop that cycles through each dimension in the DSS System. This
loop does not, however, count through each attribute for each dimension, as
the names of the attributes associated with a particular dimension can be
retrieved together as an array.

A For... Next loop repeats an action or series of actions a set number of times.
In this exercise, the number of repetitions is determined by the number of
dimensions in the DSS System, as represented by the Metabase object
MyMetabase. MyMetabase owns a collection of dimensions, which has, as a
collection, a Count property. Note that this collection was not pictured in the
simplified diagram of Figure 1-1 on page 1-9. In line 49, the Count property
returns the number of items within the collection; in this case the number of
dimensions in MyMetabase’s collection. The metadata for this DSS System,
downloaded from the relational database upon connection, populates this
collection with a set of Dimension objects. Note that since the Dimension-
Count loop counter begins at zero, we must subtract one from the number of
dimensions, as their count begins at one. This ensures that the loop repeats
only once for each dimension.

For each dimension, the loop performs three tasks:

■ retrieves the names of that dimension’s attributes identified as valid
for use in queries

■ creates a separate listbox, positioning each new listbox progressively
further to the right

■ populates the listbox with the names of the attributes
MetaCube in Thirteen Lessons: An API Tutorial 2-35

MetaCube in Thirteen Lessons: An API Tutorial
Lines 51 through 53 retrieve as an array the attributes for a particular
dimension. The latter half of this complicated equation can best be under-
stood in parts.

The first part of the equation, MyMetabase.Dimensions.Item (Dimension-
sCount), specifies the dimension for which MetaCube will retrieve an array
of attributes. The MyMetabase instantiation of the Metabase class of objects
represents a particular multi-dimensional view of relational data, as defined
by the “MetaCube Demo” DSS System.

Like any Metabase object, MyMetabase owns a collection of Dimensions and
Fact Tables, the fundamental logical objects in any DSS System. Because a
DSS System can associate different dimensions with different Fact Tables,
each Fact Table also has a collection of Dimensions, a subset of the Metabase
object’s collection that specifically correspond to the parent fact table.

The fact table at issue in the demonstration system, however, joins to all
dimensions, so the DSS System’s collection of Dimension objects contains the
same items as the FactTable object’s collection. We can thus safely refer to
MyMetabase’s collection of Dimensions without including a Dimension
object associated with the wrong fact table.

On line 52, we identify the collection of Dimensions owned by the Metabase
object in the usual way, specifying first the parent and then the collection
itself. The Dimension object within the collection is identified by index
number.

Rather than providing a constant value for the index number, we can identify
different dimensions by incrementing the index number at every cycle
through the For... Next loop. With each iteration of the loop, the Dimension-
Count integer increments by one, identifying a different item within
MyMetabase’s collection of dimensions.

The second part of the equation, AttributeNames(DisplayStyle-
Query).ArrayValues, retrieves all valid attributes within the specified
dimension, returning those values as an array. The DisplayStyleQuery
argument, which corresponds to a numeric constant declared on line 22,
specifies attributes that have been validated for use in queries. A different
argument value specifies only those attributes validated for use in filters.
When you create the metadata for an attribute, you indicate whether the
attribute is valid for use in queries or filters or both. For an explanation of
how to validate attributes for use in queries or filters through MetaCube’s
programming interface, see Table 4-7 on page 4-15.
2-36 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Please note that MetaCube initially returns the attribute name in a generic
format, which the ArrayValues method converts to an array. For devel-
opment environments that do not support arrays, such as Visual Basic 3.0,
MetaCube can return value sets in different formats, such as tab-delimited
strings. The ArrayofItems variable automatically sizes itself to store the
values of the array.

Lines 55 and 56 create a listbox in the active worksheet, “Define the Query.”
This instance of the listbox is stored in the MyListBox variable, which we
declared in line 14 as a special Excel-type variable. Including the Dimension-
Count variable as a parameter for positioning the listbox moves the location
of each new listbox further to the right as the loop counter increments. Line
59 displays the list of attribute names in the most recently created listbox. For
more information about creating, positioning, and populating listboxes,
consult Excel’s on-line Visual Basic for Applications Help.

The remainder of this procedure defines and executes the query as before.

MetaCube API Exercise 10: Creating and Populating a
Measures ListBox
In this exercise we populate a listbox with the names of the measures
available in the DSS System to which we have connected.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range
14 MyListBox As ListBox

15 'Other Variables
16 Dim MyData As Variant
17 ArrayofItems As Variant, _
18 DimensionCount As Integer
MetaCube in Thirteen Lessons: An API Tutorial 2-37

MetaCube in Thirteen Lessons: An API Tutorial
19 Const OrientationColumn = 2
20 Const SortDirectionDesc = 2
21 Const SummaryTotal = 1
22 Const DisplayStyleQuery = 2

23 Const MyFirstAttribute = “Brand”
24 Const MySecondAttribute = “Region”
25 Const MyThirdAttribute = “Fiscal Week”
26 Const MyMeasure = “Units Sold”
27 Const MySavedFilter = “Boston”

28 'Instantiate Metabase: Log in to RDBMS, Open DSS System
29 'Instantiate a Metabase object
30 Set MyMetabase = CreateObject("Metabase")

31 'Identify an ODBC data source
32 Let MyMetabase.ConnectString = "Metademo"

33 'Specify a set of metadata
34 Let MyMetabase.Name = "MetaCube Demo"

35 'Specify login to database
36 Let MyMetabase.Login = "Metademo"
37 'Passes value to database on connection

38 'Specify database password
39 Let MyMetabase.Password = "Metademo"

40 'Log in to demonstration database, open DSS System
41 MyMetabase.Connect

42 'Identify folder containing filters
43 Set FilterFolder = MyMetabase.RootFolder. _
44 Folders.Item(“Public Filters”)

45 'Query Interface: Attributes
46 Worksheets.Item(“Define the Query”).Activate

47 'Cycle through DSS System’s dimension
48 For DimensionCount = 0 To _
49 MyMetabase.Dimensions, Count - 1

50 'Get array of attributes
51 Let ArrayofItems = _
52 MyMetabase.Dimensions.Item(DimensionCount) . _
53 AttributeNames(DisplayStyleQuery) .ArrayValues

54 'Create listboxes
55 Set MyListBox = ActiveSheet.ListBoxes.Add _
56 ((DimensionCount * 80), 50, 70, 100)
57 'A listbox for each dimension, each further to right
2-38 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
58 'Populates each list box w/ attributes of a dimension
59 MyListBox.AddItem ArrayofItems

60 Next DimensionCount

61 'Query Interface: Measures

62 'Create one list box for measures
63 Set MyListBox = ActiveSheet.ListBoxes.Add _
64 ((DimensionCount * 80), 50, 70, 100)
65 'Last “Next DimensionCount” added 1, moves listbox right

66 'Get array of available measure names
67 Let ArrayofItems = _
68 MyMetabase.FactTables. _
69 Item("Sales Transactions"). _
70 MeasureNames(DisplayStyleQuery).ArrayValues

71 'Populate listbox with array of measure names
72 MyListBox.AddItem ArrayofItems

73 'Define the Query
74 Set MyQuery = MyMetabase.Queries.Add("A New Query")
75 'Adds query to MyMetabase’s collection of queries

76 Set MySummaryCategory = _
77 MyQuery.QueryCategories.Add(MyFirst Attribute)

78 Set MySortCategory = MyQuery.QueryCategories.Add _
79 (MySecondAttribute)
80 'Sort attribute values in reverse-alphabetical order
81 Let MySortCategory.SortDirection = SortDirectionDesc

82 Set MyPivotCategory = _
83 MyQuery.QueryCategories.Add(MyThirdAttribute)
84 'Pivot this attribute to the column orientation
85 Let MyPivotCategory.Orientation = OrientationColumn

86 'Add measure to MyQuery’s collection of measures
87 MyQuery.QueryItems.Add MyMeasure

88 'Add second measure, on which to perform calculation
89 MyQuery.QueryItems.Add _
90 “Abs_Change (“ + MyMeasure + “)”

91 'Apply filter: specify filter name, who saved, and folder
92 MyQuery.Filters.AddSaved _
93 MySavedFilter, “metapub”, FilterFolder

94 'Display Query Definition
95 MsgBox MyQuery.SQL
96 'MetaCube generates SQL for query prior to execution

97 'Get Query Results, Define Report
98 'Add cube to MyQuery’s cube collection
99 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")
MetaCube in Thirteen Lessons: An API Tutorial 2-39

MetaCube in Thirteen Lessons: An API Tutorial
100 'Subtotal: Regional sales for each brand
101 MyMetaCube.Summaries.Add _
102 MySummaryCategory, SummaryTotal

103 'Format data as an array VB can display, store in variable
104 Let MyData = MyMetaCube.ToVBArray
105 'The ToVBArray method implicitly requires MetaCube
106 'to execute the query on the relational database

107 'Clear "Query Report" Worksheet
108 Sheets("Query Report").Activate
109 Cells.Select
110 Selection.ClearContents

111 'Excel Code: Defines Range of Cells, Presents Data
112 Worksheets.Item("Query Report").Activate
113 Set ReportRange = _
114 ActiveSheet.Range _
115 (ActiveSheet.Cells(1, 1), _
116 ActiveSheet.Cells _
117 (MyMetaCube.Rows, MyMetaCube.Columns))
118 Let ReportRange.Value = MyData
119 ReportRange.EntireColumn.AutoFit 'Sizes columns

120 End Sub

Explanation of MetaCube API Exercise 10

This exercise creates a listbox to store the names of measures available in our
data source, the “Sales Transactions” fact table. As before, the new code for
this exercise relies heavily upon Excel functionality and can be copied from
the tab labeled “Exercise #10” in the M3_API.xls workbook, located in your
MetaCube training directory.

The syntax for populating a listbox with measures is nearly identical to the
code in lines 48 through 60, which displays the attributes for each dimension
in separate listboxes. Consequently, we can re-use the variables and constants
declared in the previous exercise. For this and other reasons, our task in this
exercise is simpler than before.
2-40 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
In the previous exercise we cycled through every dimension in the DSS
System to retrieve the names of valid query attributes, but to retrieve the
names of measures we need merely access a single fact table’s collection of
measures. Although you can define a query retrieving information from
multiple fact tables, such a task is slightly more complicated and is left to
advanced developers. This exercise creates a listbox to display the valid
query measures for one of the two fact tables in the “MetaCube Demo” DSS
System, the “Sales Transaction” fact table.

Lines 63 and 64 create this listbox, including the DimensionCount variable as
an element in the set of arguments that determine its location. As the value
of the DimensionCount variable increases, the position of the listbox moves
further to the right. Because the last line of the loop defined in the previous
exercise increments the DimensionsCount loop counter before exiting the
loop, the position of the left edge of the new measures listbox appears 80
points to the right of the last dimension listbox. Each point corresponds to
1/72nd of an inch.

Lines 67 through 70 store an array of measure names in the ArrayofItems
variant variable. This complicated command parallels the structure of the
command to retrieve a dimension’s array of attribute names (lines 51 through
53). The command begins by identifying the particular fact table within a DSS
System for which you want to retrieve measure names. We do not reference
this collection item by a variable index number, as we did when identifying
dimensions, but by name.

All of the exercises in this tutorial have, by default, queried on measures in
the fact table that we now explicitly identify as “Sales Transactions.” This fact
table is the default by virtue of having been instantiated first when the
metadata for this DSS System was created.

The MeasureNames property represents the names of all valid measures
stored in a particular fact table. This property requires the same argument as
the AttributeNames property, in which the DisplayStyleQuery constant
limits the items in the array to those validated for use in a query. As before,
the ArrayValues method returns the set of measure names as an array, which
the variant variable, ArrayofItems can easily accept. Line 72 populates the
newly-created listbox with this array of measure names.
MetaCube in Thirteen Lessons: An API Tutorial 2-41

MetaCube in Thirteen Lessons: An API Tutorial
MetaCube API Exercise 11: Displaying a List of Saved
Filters
In this exercise, we complete the interface begun in Exercise #9, displaying
the names of all filters saved by the metapub user in a particular folder object.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range
14 MyListBox As ListBox

15 'Other Variables
16 Dim MyData As Variant
17 ArrayofItems As Variant, _
18 DimensionCount As Integer

19 Const OrientationColumn = 2
20 Const SortDirectionDesc = 2
21 Const SummaryTotal = 1
22 Const DisplayStyleQuery = 2

23 Const MyFirstAttribute = “Brand”
24 Const MySecondAttribute = “Region”
25 Const MyThirdAttribute = “Fiscal Week”
26 Const MyMeasure = “Units Sold”
27 Const MySavedFilter = “Boston”

28 'Instantiate Metabase: Log in to RDBMS, Open DSS System
29 'Instantiate a Metabase object
30 Set MyMetabase = CreateObject("Metabase")

31 'Identify an ODBC data source
32 Let MyMetabase.ConnectString = "Metademo"

33 'Specify a set of metadata
34 Let MyMetabase.Name = "MetaCube Demo"

35 'Specify login to database
36 Let MyMetabase.Login = "Metademo"
37 'Passes value to database on connection
2-42 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
38 'Specify database password
39 Let MyMetabase.Password = "Metademo"

40 'Log in to demonstration database, open DSS System
41 MyMetabase.Connect

42 'Identify folder containing filters
43 Set FilterFolder = MyMetabase.RootFolder. _
44 Folders.Item(“Public Filters”)

45 'Query Interface: Attributes
46 Worksheets.Item(“Define the Query”).Activate

47 'Cycle through DSS System’s dimension
48 For DimensionCount = 0 To _
49 MyMetabase.Dimensions, Count - 1

50 'Get array of attributes
51 Let ArrayofItems = _
52 MyMetabase.Dimensions.Item(DimensionCount) . _
53 AttributeNames(DisplayStyleQuery) .ArrayValues

54 'Create listboxes
55 Set MyListBox = ActiveSheet.ListBoxes.Add _
56 ((DimensionCount * 80), 50, 70, 100)
57 'A listbox for each dimension, each further to right

58 'Populates each list box w/ attributes of a dimension
59 MyListBox.AddItem ArrayofItems

60 Next DimensionCount

61 'Query Interface: Measures

62 'Create one list box for measures
63 Set MyListBox = ActiveSheet.ListBoxes.Add _
64 ((DimensionCount * 80), 50, 70, 100)
65 'Last “Next DimensionCount” added 1, moves listbox right

66 'Get array of available measure names
67 Let ArrayofItems = _
68 MyMetabase.FactTables. _
69 Item("Sales Transactions"). _
70 MeasureNames(DisplayStyleQuery).ArrayValues

71 'Populate listbox with array of measure names
72 MyListBox.AddItem ArrayofItems

73 'Query Interface: Saved Filters
74 'Create listbox for saved filters
75 Set MyListBox = ActiveSheet.ListBoxes.Add _
76 (((DimensionCount + 1) * 80), 50, 120, 150)
77 'Increments "DimensionCount" by 1, moves listbox to right
MetaCube in Thirteen Lessons: An API Tutorial 2-43

MetaCube in Thirteen Lessons: An API Tutorial
78 'Get array of filters in root folder owned by metapub
79 Let ArrayofItems = _
80 FilterFolder.FilterNames _
81 ("metapub", "").ArrayValues

82 'Populate list box with array of filter names
83 MyListBox.AddItem ArrayofItems

84 'Define the Query
85 Set MyQuery = MyMetabase.Queries.Add("A New Query")
86 'Adds query to MyMetabase’s collection of queries

87 Set MySummaryCategory = _
88 MyQuery.QueryCategories.Add(MyFirst Attribute)

89 Set MySortCategory = MyQuery.QueryCategories.Add _
90 (MySecondAttribute)
91 'Sort attribute values in reverse-alphabetical order
92 Let MySortCategory.SortDirection = SortDirectionDesc

93 Set MyPivotCategory = _
94 MyQuery.QueryCategories.Add(MyThirdAttribute)
95 'Pivot this attribute to the column orientation
96 Let MyPivotCategory.Orientation = OrientationColumn

97 'Add measure to MyQuery’s collection of measures
98 MyQuery.QueryItems.Add MyMeasure

99 'Add second measure, on which to perform calculation
100 MyQuery.QueryItems.Add _
101 “Abs_Change (“ + MyMeasure + “)”

102 'Apply filter: specify filter name, who saved, and folder
103 MyQuery.Filters.AddSaved _
104 MySavedFilter, “metapub”, FilterFolder

105 'Display Query Definition
106 MsgBox MyQuery.SQL
107 'MetaCube generates SQL for query prior to execution

108 'Get Query Results, Define Report
109 'Add cube to MyQuery’s cube collection
110 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

111 'Subtotal: Regional sales for each brand
112 MyMetaCube.Summaries.Add _
113 MySummaryCategory, SummaryTotal

114 'Format data as an array VB can display, store in variable
115 Let MyData = MyMetaCube.ToVBArray
116 'The ToVBArray method implicitly requires MetaCube
117 'to execute the query on the relational database
2-44 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
118 'Clear "Query Report" Worksheet
119 Sheets("Query Report").Activate
120 Cells.Select
121 Selection.ClearContents

122 'Excel Code: Defines Range of Cells, Presents Data
123 Worksheets.Item("Query Report").Activate
124 Set ReportRange = _
125 ActiveSheet.Range _
126 (ActiveSheet.Cells(1, 1), _
127 ActiveSheet.Cells _
128 (MyMetaCube.Rows, MyMetaCube.Columns))
129 Let ReportRange.Value = MyData
130 ReportRange.EntireColumn.AutoFit 'Sizes columns

131 End Sub

Explanation of MetaCube API Exercise 11

In this exercise, we display the names of publicly-saved filters, completing
our simple query interface. As before, we can incorporate variables declared
for previous sections of the application, such as MyListBox, ArrayofItems,
and DimensionCount. The new listbox object, instantiated and stored in
MyListBox on lines 75 and 76, is positioned to the right of previous listboxes.
The DimensionCount variable, used throughout the application as a
parameter for the horizontal positioning of listboxes, is artificially incre-
mented by one from its previous value and multiplied by a factor of 80. It
remains for us to retrieve the names of the filters stored in the root folder for
this DSS System.

As we discussed previously in “Explanation of MetaCube API Exercise 4” on
page 2-16, MetaCube offers a hierarchical folder interface for storing logical
objects as metadata. The RootFolder object owned by the Metabase object
represents the first folder, and any Folder objects owned by RootFolder
represent subdirectories of that first folder.
MetaCube in Thirteen Lessons: An API Tutorial 2-45

MetaCube in Thirteen Lessons: An API Tutorial
On lines 79 through 81 of this exercise, we display in a listbox the names of
filters saved by MetaCube’s public user, metapub, in the folder identified by
the FilterFolder object. The FilterNames method of any Folder object,
including the RootFolder object, requires two arguments: the name of the
user who saved the filters in question, and the name of the group to which
those filters belong. Usually filters are organized by group according to the
dimension with which they are associated. Passing an empty string for the
second argument returns all filters, regardless of their groupings. Since the
FilterNames method returns the names of all filters in a generic format, the
ArrayValues method converts the value list to an array that is ultimately
stored in the ArrayofItems variant variable.

Line 83 adds the items in this array to the listbox defined in lines 75 and 76.
The remainder of the procedure executes as before.

MetaCube API Exercise 12: Prompting Users to Define
Queries
In this exercise we replace the constants previously supplying the arguments
for attribute, measure, and filter specifications with variables, the values of
which can be supplied by a user.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range
14 MyListBox As ListBox
2-46 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
15 'Other Variables
16 Dim MyData As Variant
17 ArrayofItems As Variant, _
18 DimensionCount As Integer
19 MyFirstAttribute As String, _
20 MySecondAttribute As String, _
21 MyThirdAttribute As String, _
22 MyMeasure As String, _
23 MySavedFilter As String

24 Const OrientationColumn = 2
25 Const SortDirectionDesc = 2
26 Const SummaryTotal = 1
27 Const DisplayStyleQuery = 2
28 Const MyFirstAttribute = “Brand”
29 Const MySecondAttribute = “Region”
30 Const MyThirdAttribute = “Fiscal Week”
31 Const MyMeasure = “Units Sold”
32 Const MySavedFilter = “Boston”

33 'Instantiate Metabase: Log in to RDBMS, Open DSS System
34 'Instantiate a Metabase object
35 Set MyMetabase = CreateObject("Metabase")

36 'Identify an ODBC data source
37 Let MyMetabase.ConnectString = "Metademo"

38 'Specify a set of metadata
39 Let MyMetabase.Name = "MetaCube Demo"

40 'Specify login to database
41 Let MyMetabase.Login = "Metademo"
42 'Passes value to database on connection

43 'Specify database password
44 Let MyMetabase.Password = "Metademo"

45 'Log in to demonstration database, open DSS System
46 MyMetabase.Connect

47 'Identify folder containing filters
48 Set FilterFolder = MyMetabase.RootFolder. _
49 Folders.Item(“Public Filters”)

50 'Query Interface: Attributes
51 Worksheets.Item(“Define the Query”).Activate

52 'Cycle through DSS System’s dimension
53 For DimensionCount = 0 To _
54 MyMetabase.Dimensions, Count - 1
MetaCube in Thirteen Lessons: An API Tutorial 2-47

MetaCube in Thirteen Lessons: An API Tutorial
55 'Get array of attributes
56 Let ArrayofItems = _
57 MyMetabase.Dimensions.Item(DimensionCount) . _
58 AttributeNames(DisplayStyleQuery) .ArrayValues

59 'Create listboxes
60 Set MyListBox = ActiveSheet.ListBoxes.Add _
61 ((DimensionCount * 80), 50, 70, 100)
62 'A listbox for each dimension, each further to right

63 'Populates each list box w/ attributes of a dimension
64 MyListBox.AddItem ArrayofItems

65 Next DimensionCount

66 'Query Interface: Measures

67 'Create one list box for measures
68 Set MyListBox = ActiveSheet.ListBoxes.Add _
69 ((DimensionCount * 80), 50, 70, 100)
70 'Last “Next DimensionCount” added 1, moves listbox right

71 'Get array of available measure names
72 Let ArrayofItems = _
73 MyMetabase.FactTables. _
74 Item("Sales Transactions"). _
75 MeasureNames(DisplayStyleQuery).ArrayValues

76 'Populate listbox with array of measure names
77 MyListBox.AddItem ArrayofItems

78 'Query Interface: Saved Filters
79 'Create listbox for saved filters
80 Set MyListBox = ActiveSheet.ListBoxes.Add _
81 (((DimensionCount + 1) * 80), 50, 120, 150)
82 'Increments "DimensionCount" by 1, moves listbox to right

83 'Get array of filters in root folder owned by metapub
84 Let ArrayofItems = _
85 FilterFolder.FilterNames _
86 ("metapub", "").ArrayValues

87 'Populate list box with array of filter names
88 MyListBox.AddItem ArrayofItems

89 'Retrieve Names of Attributes, Measure, Filter from User
90 Let MyFirstAttribute = _
91 InputBox(Prompt:= _
92 "Enter an attribute on which to query:", _
93 Title:="First Attribute")
2-48 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
94 Let MySecondAttribute = _
95 InputBox(Prompt:= _
96 "Enter the name of another attribute:", _
97 Title:="Second Attribute")

98 Let MyThirdAttribute = _
99 InputBox(Prompt:= _

100 "Enter the name of a third attribute:", _
101 Title:="Attribute Organized by Columns")

102 Let MyMeasure = _
103 InputBox(Prompt:= _
104 "Enter a measure on which to query:", _
105 Title:="Measure")

106 Let MySavedFilter = _
107 InputBox(Prompt:= _
108 "Enter the name of a saved filter:", _
109 Title:="Filter")

110 'Define the Query
111 Set MyQuery = MyMetabase.Queries.Add("A New Query")
112 'Adds query to MyMetabase’s collection of queries

113 Set MySummaryCategory = _
114 MyQuery.QueryCategories.Add(MyFirst Attribute)

115 Set MySortCategory = MyQuery.QueryCategories.Add _
116 (MySecondAttribute)
117 'Sort attribute values in reverse-alphabetical order
118 Let MySortCategory.SortDirection = SortDirectionDesc

119 Set MyPivotCategory = _
120 MyQuery.QueryCategories.Add(MyThirdAttribute)
121 'Pivot this attribute to the column orientation
122 Let MyPivotCategory.Orientation = OrientationColumn

123 'Add measure to MyQuery’s collection of measures
124 MyQuery.QueryItems.Add MyMeasure

125 'Add second measure, on which to perform calculation
126 MyQuery.QueryItems.Add _
127 “Abs_Change (“ + MyMeasure + “)”

128 'Apply filter: specify filter name, who saved, and folder
129 MyQuery.Filters.AddSaved _
130 MySavedFilter, “metapub”, FilterFolder

131 'Display Query Definition
132 MsgBox MyQuery.SQL
133 'MetaCube generates SQL for query prior to execution
MetaCube in Thirteen Lessons: An API Tutorial 2-49

MetaCube in Thirteen Lessons: An API Tutorial
134 'Get Query Results, Define Report
135 'Add cube to MyQuery’s cube collection
136 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

137 'Subtotal: Regional sales for each brand
138 MyMetaCube.Summaries.Add _
139 MySummaryCategory, SummaryTotal

140 'Format data as an array VB can display, store in variable
141 Let MyData = MyMetaCube.ToVBArray
142 'The ToVBArray method implicitly requires MetaCube
143 'to execute the query on the relational database

144 'Clear "Query Report" Worksheet
145 Sheets("Query Report").Activate
146 Cells.Select
147 Selection.ClearContents

148 'Excel Code: Defines Range of Cells, Presents Data
149 Worksheets.Item("Query Report").Activate
150 Set ReportRange = _
151 ActiveSheet.Range _
152 (ActiveSheet.Cells(1, 1), _
153 ActiveSheet.Cells _
154 (MyMetaCube.Rows, MyMetaCube.Columns))
155 Let ReportRange.Value = MyData
156 ReportRange.EntireColumn.AutoFit 'Sizes columns

157 End Sub

Explanation of MetaCube API Exercise 12

This exercise demonstrates how easily you can prompt users to define an ad-
hoc query. Because we have declared constants for each parameter in the
query definition, we can simply replace those constants with string variables,
requesting the user to enter the values for each. The existing structure of
Metabase, Query, QueryCategory, QueryItem, MetaCube, and Summary
objects remains intact; only the values of their arguments change, as well as
the way in which the application provides those values. Consequently, this
exercise does not introduce any MetaCube functionality, and all of the new
code can be copied from the tab labeled “Exercise #12,” in the M3_API.xls
workbook located in your training directory.
2-50 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Lines 19 through 23 declare variables of the same names as the redacted
constants appearing on lines 28 through 32. As the redaction suggests, these
variables replace the constants of the same name; you should thus delete
these constant declarations. The arguments represented by each variable are
all of the string type. As in previous exercises, the procedure subsequently
connects to the database and opens a particular multi-dimensional view of
the tables and columns, displaying in listboxes the library of attributes,
measures, and saved filters that a user can incorporate into his or her query
definition.

Lines 90 to 109 prompt the user to provide the names of the three attributes,
the measure, and the saved filter included in the query defined on lines 111
through 130. InputBoxes, a standard Visual Basic for Applications object for
requesting information from a user, store users’ responses in the variables we
declared earlier in the procedure. When prompted for the information, the
user must precisely identify the attribute, measure, and filter values, as they
appear in the listboxes in the “Define the Query” spreadsheet.

Lines 132 through 157 execute the query as before, substituting values
provided by the user as arguments in the commands defining the query and
the ensuing report.
MetaCube in Thirteen Lessons: An API Tutorial 2-51

MetaCube in Thirteen Lessons: An API Tutorial
MetaCube API Exercise 13: Slow Query Warning
In this exercise we include a section evaluating the performance cost of a
user-defined query, warning the user if the query accesses large tables.

1 Option Explicit 'All variables declared explicitly

2 Sub MetaCube_API()

3 'Declare Variables and Constants
4 'Object Variables
5 Dim MyMetabase As Object, _
6 FilterFolder as Object, _
7 MyQuery As Object, _
8 MyMetaCube As Object
9 MySummaryCategory As Object, _

10 MySortCategory As Object, _
11 MyPivotCategory As Object

12 'Excel Variables
13 Dim ReportRange As Range
14 MyListBox As ListBox

15 'Other Variables
16 Dim MyData As Variant
17 ArrayofItems As Variant, _
18 DimensionCount As Integer
19 MyFirstAttribute As String, _
20 MySecondAttribute As String, _
21 MyThirdAttribute As String, _
22 MyMeasure As String, _
23 MySavedFilter As String
24 CostWarning As Integer

25 Const OrientationColumn = 2
26 Const SortDirectionDesc = 2
27 Const SummaryTotal = 1
28 Const DisplayStyleQuery = 2

29 'Instantiate Metabase: Log in to RDBMS, Open DSS System
30 'Instantiate a Metabase object
31 Set MyMetabase = CreateObject("Metabase")

32 'Identify an ODBC data source
33 Let MyMetabase.ConnectString = "Metademo"

34 'Specify a set of metadata
35 Let MyMetabase.Name = "MetaCube Demo"

36 'Specify login to database
37 Let MyMetabase.Login = "Metademo"
38 'Passes value to database on connection
2-52 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
39 'Specify database password
40 Let MyMetabase.Password = "Metademo"

41 'Log in to demonstration database, open DSS System
42 MyMetabase.Connect

43 'Identify folder containing filters
44 Set FilterFolder = MyMetabase.RootFolder. _
45 Folders.Item(“Public Filters”)

46 'Query Interface: Attributes
47 Worksheets.Item(“Define the Query”).Activate

48 'Cycle through DSS System’s dimension
49 For DimensionCount = 0 To _
50 MyMetabase.Dimensions, Count - 1

51 'Get array of attributes
52 Let ArrayofItems = _
53 MyMetabase.Dimensions.Item(DimensionCount) . _
54 AttributeNames(DisplayStyleQuery) .ArrayValues

55 'Create listboxes
56 Set MyListBox = ActiveSheet.ListBoxes.Add _
57 ((DimensionCount * 80), 50, 70, 100)
58 'A listbox for each dimension, each further to right

59 'Populates each list box w/ attributes of a dimension
60 MyListBox.AddItem ArrayofItems

61 Next DimensionCount

62 'Query Interface: Measures

63 'Create one list box for measures
64 Set MyListBox = ActiveSheet.ListBoxes.Add _
65 ((DimensionCount * 80), 50, 70, 100)
66 'Last “Next DimensionCount” added 1, moves listbox right

67 'Get array of available measure names
68 Let ArrayofItems = _
69 MyMetabase.FactTables. _
70 Item("Sales Transactions"). _
71 MeasureNames(DisplayStyleQuery).ArrayValues

72 'Populate listbox with array of measure names
73 MyListBox.AddItem ArrayofItems

74 'Query Interface: Saved Filters
75 'Create listbox for saved filters
76 Set MyListBox = ActiveSheet.ListBoxes.Add _
77 (((DimensionCount + 1) * 80), 50, 120, 150)
78 'Increments "DimensionCount" by 1, moves listbox to right
MetaCube in Thirteen Lessons: An API Tutorial 2-53

MetaCube in Thirteen Lessons: An API Tutorial
79 'Get array of filters in root folder owned by metapub
80 Let ArrayofItems = _
81 FilterFolder.FilterNames _
82 ("metapub", "").ArrayValues

83 'Populate list box with array of filter names
84 MyListBox.AddItem ArrayofItems

85 'Retrieve Names of Attributes, Measure, Filter from User
86 DefineQuery:
87 Let MyFirstAttribute = _
88 InputBox(Prompt:= _
89 "Enter an attribute on which to query:", _
90 Title:="First Attribute")

91 Let MySecondAttribute = _
92 InputBox(Prompt:= _
93 "Enter the name of another attribute:", _
94 Title:="Second Attribute")

95 Let MyThirdAttribute = _
96 InputBox(Prompt:= _
97 "Enter the name of a third attribute:", _
98 Title:="Attribute Organized by Columns")

99 Let MyMeasure = _
100 InputBox(Prompt:= _
101 "Enter a measure on which to query:", _
102 Title:="Measure")

103 Let MySavedFilter = _
104 InputBox(Prompt:= _
105 "Enter the name of a saved filter:", _
106 Title:="Filter")

107 'Define the Query
108 Set MyQuery = MyMetabase.Queries.Add("A New Query")
109 'Adds query to MyMetabase’s collection of queries

110 Set MySummaryCategory = _
111 MyQuery.QueryCategories.Add(MyFirst Attribute)

112 Set MySortCategory = MyQuery.QueryCategories.Add _
113 (MySecondAttribute)
114 'Sort attribute values in reverse-alphabetical order
115 Let MySortCategory.SortDirection = SortDirectionDesc

116 Set MyPivotCategory = _
117 MyQuery.QueryCategories.Add(MyThirdAttribute)
118 'Pivot this attribute to the column orientation
119 Let MyPivotCategory.Orientation = OrientationColumn

120 'Add measure to MyQuery’s collection of measures
121 MyQuery.QueryItems.Add MyMeasure
2-54 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
122 'Add second measure, on which to perform calculation
123 MyQuery.QueryItems.Add _
124 “Abs_Change (“ + MyMeasure + “)”

125 'Apply filter: specify filter name, who saved, and folder
126 MyQuery.Filters.AddSaved _
127 MySavedFilter, “metapub”, FilterFolder

128 'Display Query Definition
129 MsgBox MyQuery.SQL
130 'MetaCube generates SQL for query prior to execution

131 'Check cost of tables to be accessed by MetaCube, warn user
132 If MyQuery.Cost > 30000 Then 'Arbitrary value

133 CostWarning = MsgBox _
134 (Prompt:= _
135 "This query may be slow. Run query anyway?", _
136 Title:="Query Cost Warning", _
137 Buttons:= _
138 vbYesNo + vbExclamation + vbDefaultButton2)

139 'Warn user
140 If CostWarning = vbNo Then
141 GoTo DefineQuery: 'Allow user to redefine query
142 End If 'Otherwise, execute query

143 End If

144 'Get Query Results, Define Report
145 'Add cube to MyQuery’s cube collection
146 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")

147 'Subtotal: Regional sales for each brand
148 MyMetaCube.Summaries.Add _
149 MySummaryCategory, SummaryTotal

150 'Format data as an array VB can display, store in variable
151 Let MyData = MyMetaCube.ToVBArray
152 'The ToVBArray method implicitly requires MetaCube
153 'to execute the query on the relational database

154 'Clear "Query Report" Worksheet
155 Sheets("Query Report").Activate
156 Cells.Select
157 Selection.ClearContents
MetaCube in Thirteen Lessons: An API Tutorial 2-55

MetaCube in Thirteen Lessons: An API Tutorial
158 'Excel Code: Defines Range of Cells, Presents Data
159 Worksheets.Item("Query Report").Activate
160 Set ReportRange = _
161 ActiveSheet.Range _
162 (ActiveSheet.Cells(1, 1), _
163 ActiveSheet.Cells _
164 (MyMetaCube.Rows, MyMetaCube.Columns))
165 Let ReportRange.Value = MyData
166 ReportRange.EntireColumn.AutoFit 'Sizes columns

167 End Sub

Explanation of MetaCube API Exercise 13

Allowing a user to define a query introduces the risk of poorly-designed
queries that access extremely large tables. When optimizing the SQL for a
particular query, MetaCube assesses the relative performance costs of
accessing different tables. These costs, which typically correspond to the
number of rows in each table, are assigned by the administrator, who
generates a metadata description for each fact or summary table.

When generating the SQL for a query, MetaCube identifies the table that
features the lowest possible cost and involves a minimal number of joins. The
cost of the fact or summary table for which MetaCube generates SQL repre-
sents the cost of the query itself, regardless of the number of rows that the
query selects from that table.

Each fully-defined Query object has a Cost property, the value of which is
calculated by the MetaCube engine when it generates SQL for that query. On
the basis of this value’s magnitude, this exercise can warn the user of a
possible delay before the query executes, offering him or her the option of
redefining the query.

Line 132 evaluates the cost of the query represented by the MyQuery object,
setting a threshold of 30,000, which, if exceeded, prompts MetaCube to warn
the user. If the query’s cost does not exceed this value, the application’s
execution path ignores the rest of this section of code. In the event a warning
is warranted, the application displays the warning in a MsgBox, as specified
in lines 133 through 138.
2-56 MetaCube Application Programmer’s Manual

MetaCube in Thirteen Lessons: An API Tutorial
Unlike the MsgBox created in line 129 to show the SQL generated for a query,
this MsgBox returns a user-defined value to the CostWarning integer. This
value depends on the button clicked by the user, with each button corre-
sponding to a numeric argument. If the user clicks the “No” button,
indicating that he or she does not wish to execute the query as currently
defined, the nested condition in line 140 is satisfied and line 141 executes.
This line returns the user to the section beginning on line 86, identified in this
exercise by the header “DefineQuery.” By returning to this section, the appli-
cation forces the user to re-define the query. If the user clicks the “Yes” button,
the query runs anyway, ignoring the nested code.
MetaCube in Thirteen Lessons: An API Tutorial 2-57

MetaCube in Thirteen Lessons: An API Tutorial
2-58 MetaCube Application Programmer’s Manual

3
Chapter
The Metabase Class of Objects
The Metabase Class of Objects 3-3
Metabase Properties 3-5

Connection Information in MetaCube 4.0 3-5
Metabase Methods 3-11
Related Constants 3-15
Metabase Collections 3-17

3-2 Meta
Cube Application Programmer’s Manual

This chapter introduces the Metabase class of objects, which represent
a virtual multi-dimensional database.

The Metabase Class of Objects
Before you can build a query, you must define a logical representation of a
multi-dimensional database by creating an instance of the Metabase class of
objects. Each Metabase object is the logical representation of a different multi-
dimensional database, and the properties of a particular Metabase object
specify the characteristics of that multi-dimensional database, including the
relational database on which your multi-dimensional system is based, the
multi-dimensional interface through which it will be accessed, as well as the
analytical functions available.

For every MetaCube procedure, a Metabase object is the founding or
“master” object, with all other objects existing as children, grandchildren,
great-grandchildren, etc. of this master object.

As a class, Metabase objects stand at the top of a hierarchy of MetaCube
object classes. A Metabase object is the parent of a collection of queries
accessing data from the tables represented by that Metabase object. Objects of
the same class are organized into a collection belonging to the parent object.
A Metabase’s collection of Query objects represents the different ways in
which that instance of a multi-dimensional database can be queried. A query
cannot exist but within a collection belonging to the Metabase object; in fact,
a free-standing query would be meaningless since a query is defined in terms
of the multi-dimensional view of the database (i.e., instance of a Metabase
object) that it queries.
The Metabase Class of Objects 3-3

The Metabase Class of Objects
All but the most low-level objects are parents of one or more collections. For
example, each query is the parent of a collection of selected attributes (Query-
Categories), measures (QueryItems), filters (Filters), and reports
(MetaCubes). In turn, attributes, measures, filters, and reports define
different aspects of a query. More generally, each collection defines an aspect
of the parent object.

At the outset of any MetaCube procedure, you must create an instance of the
Metabase class. In Visual Basic and Visual Basic for Applications, the
CreateObject function performs this task. The class of the object you wish to
create is an argument in the CreateObject statement. Before instantiating a
Metabase object, you must declare an object variable and set that variable
equal to the newly-created instance of the Metabase class of objects:

Dim MyMetabase as Object
Set MyMetabase = CreateObject("Metabase")

The environment in which you develop MetaCube applications recognizes
the Metabase class of objects because MetaCube registers its library of objects
when you install MetaCube. While the object variable representing a
particular instance of a Metabase class of objects can have any unique name,
the Metabase class name that you pass to the CreateObject function is always
the same.

Please note that other object classes are not instantiated by a CreateObject
function or that function’s analog in other development environments.
Instances of object classes other than the Metabase class exist within collec-
tions directly or ultimately belonging to an instance of a Metabase object. To
instantiate a Query object for example, you need only add a query to a
Metabase object’s collection of queries:

MyMetabase.Queries.Add “New Brand/Region Query”

or

Dim MyQuery as Object
Set MyQuery = MyMetabase.Queries.Add _

(“New Brand/Region Query”)
3-4 MetaCube Application Programmer’s Manual

Metabase Properties
Metabase Properties
Many of the properties of the Metabase object correspond to the preferences
of Explorer or Warehouse Manager. These properties specify the character-
istics of the virtual multi-dimensional database that the Metabase object
represents. Table 3-1 summarizes the properties of the Metabase class of
objects.

Connection Information in MetaCube 4.0

MetaCube 4.0 introduces two major new features: Web Explorer, a data
access tool that can be used from an internet browser, and Secure Warehouse,
a utility for controlling user access to data warehouses. To incorporate these
new features, MetaCube now has the capability of handling connection infor-
mation for a user differently than it did in previous versions.

In MetaCube 4.0, user information can be stored in two places: the registry of
the machine where the MetaCube engine is running and the metadata
CLIENT table for the current database connection. The user properties stored
in the registry provide default connection information. They allow Web
Explorer users to connect to the database via MetaCube. All other user
properties are stored in the CLIENT table in the database.

When Secure Warehouse is used to create users, entries for those users are
created in the registry of the computer running the MetaCube engine to
which Secure Warehouse is connected. Typically that computer is a middle-
tier NT server. If there are multiple middle-tier NT servers, entries must be
created in the registry of each machine for the users connecting through the
MetaCube engine running on that machine.
Metabase Properties 3-5

Metabase Properties
Users of client/server applications, such as MetaCube Explorer, do not need
registry entries to enable a database connection. These applications always
set their connection properties explicitly, either through user input or by
using the values defined in the client’s MetaCube.ini file.

Table 3-1 Metabase Class of Objects: Properties

Property Description/Example

Application Object: This property returns the application object, that
is, the MetaCube engine. This property, though essen-
tially useless, is required by OLE.

MsgBox MyMetabase.Application.Version.

ClientType A read-only property that identifies the development
environment in which the Metabase object has been
instantiated; determines the format in which MetaCube
returns strings. See “Related Constants” on page 3-15 for
more information on constants.

MsgBox MyMetabase.ClientType

Configuration Identifies a set of properties stored as parameters in
MetaCube.ini. String. In version 4.0 and later releases of
MetaCube, the MetaCube engine does use this property.
It is retained, however, for compatibility with previous
versions.

MyMetabase.Configuration = “Default”

ConnectDatabase Identifies vendor of RDBMS. See “Related Constants” on
page 3-15 for more information on vendor constants. If
not specified explicitly, this property defaults to
Informix.

MyMetabase.ConnectDatabase = DBVendorInformix

Connected Indicates whether a Metabase object has connected to
RDBMS. Returns true if connected.

If MyMetabase.Connected = True _
 Then MsgBox “Hooray!”

ConnectString Identifies an ODBC data source. To establish a database
connection, this property must be set explicitly.

MyMetabase.ConnectString = “MetaDemo”
3-6 MetaCube Application Programmer’s Manual

Metabase Properties
CurrentTime Retrieves current data and time from PC clock. Use with
QueryBack. Variant (date).

MsgBox MyMetabase.CurrentTime

DatabaseDBSpaces ValueList of all valid dbspaces for the current database
connection. The contents of this ValueList are used to
make a list of possible dbspaces, from which one can be
chosen to store a user’s QueryBackJob objects.

MsgBox MyMetabase.DatabaseRoles

DatabaseRoles ValueList of all Informix roles defined in metadata. The
contents of this ValueList are used to make a list of
possible database roles that can be assigned to users
managed in MetaCube Secure Warehouse.

MsgBox MyMetabase.DatabaseRoles

DatabaseUsers ValueList of all Informix users defined in the database.
The contents of this ValueList are used to make a list of
possible users, from which users that will be managed in
Secure Warehouse are selected.

MsgBox MyMetabase.DatabaseUsers

DataSkip This long value property determines whether an
Informix RDBMS can skip locked or otherwise
unavailable rows when attempting to retrieve data. See
constants below. MetaCube enables or disables data skip,
as specified, upon connection to an Informix RDBMS.
Defaults to 2, the constant for accepting Data Skip
default.

MyMetabase.DataSkip = DataSkipOff

For more information, see the DATASKIP entry in the
Informix Guide to SQL: Syntax.

DataSources ValueList of ODBC data sources available to MetaCube.
The contents of this ValueList are used to make a list of
database connections from which a user can select one.

MsgBox MyMetabase.DataSources

Table 3-1 Metabase Class of Objects: Properties (continued)

Property Description/Example
Metabase Properties 3-7

Metabase Properties
Explain Setting this Boolean property to true prompts an
Informix RDBMS to record information such as the
execution plan and the cost of each query, as generated by
the database-server optimizer, in a server-side file titled
sqexplain.out. The default value of this property is false.
MetaCube activates this database feature, if requested,
upon connection to an Informix RDBMS.

MyMetabase.Explain = True

See the SET EXPLAIN entry in the Informix Guide to SQL:
Syntax for more information.

LastUpdate Stores date on which DSS System’s metadata was last
modified. Variant (date).

MsgBox MyMetabase.LastUpdate

LocalMetamodelFile Name of file storing local copy of metadata. Defaults
from MetaCube.ini file. String.

MyMetabase.LocalMetamodelFile = "MetaCube.DSS”

Login User name passed to RDBMS for login. Default read from
MetaCube.ini. String.

MyMetabase.Login = “MetaDemo”

MaxTotalFetches Specifies number of rows MetaCube retrieves before
aborting a query.

MyMetabase.MaxTotalFetches = 4000

MetamodelNames ValueList of all DSS System names in metadata. With
MetaCube 4.0, this property has been replaced by the
Names property of the DSSSystems collection (that is,
Metabase.DSSSystems.Names).

MsgBox MyMetabase.MetamodelNames

MetaSchema Identifies a schema (or prefix) for metadata tables. To
establish a database connection, this property must be set
explicitly.

MyMetabase.Schema = “MetaCube.”

Table 3-1 Metabase Class of Objects: Properties (continued)

Property Description/Example
3-8 MetaCube Application Programmer’s Manual

Metabase Properties
Name Default property; the name of the DSS System to be
created or name of DSS System currently open. String.

MyMetabase.Name = “MetaCube Demo”

Optimization This Boolean property determines the extent to which the
optimizer of an Informix RDBMS evaluates every
possible execution strategy for a SQL query. The default
value of true allows the RDBMS optimizer time to
consider all reasonable join strategies and indexes.
Setting this property to false reduces the time devoted to
optimizing SQL queries but may preclude the RDBMS
optimizer from deploying the most efficient execution
plan. MetaCube sets the optimization level upon
connection to an Informix RDBMS.

MyMetabase.Optimization = False

See the SET OPTIMIZATION entry in the Informix Guide
to SQL: Syntax for more information.

Parent Returns the application object. Required by OLE for
multi-threading.

MsgBox MyMetabase.Parent

Password Password submitted to database server. Setting this
property through the programming interface does not
automatically record a value in MetaCube’s initialization
file. String.

MyMetabase.Password = “MetaDemo”

Table 3-1 Metabase Class of Objects: Properties (continued)

Property Description/Example
Metabase Properties 3-9

Metabase Properties
PDQPriority This property designates the Parallel Data Query (PDQ)
Priority of all decision support system queries submitted
by MetaCube to the Informix database. PDQ Priorities,
which can range from 0 to 100, determine the extent to
which the Informix database executes queries in parallel.

A value of 0 explicitly precludes any parallel operations,
a value of one enables only parallel scans, and values
between two and 100 represent the percent of available
system resources that queries against this decision
support system can consume. In multi-processor
systems, high PDQ Priorities enable the database to
process queries faster.

PDQ Priorities may be limited by environment variables
and files established by the database administrator when
configuring the Informix RDBMS. The long value of this
property defaults to -1, indicating that MetaCube will not
set PDQ Priorities. Accept this default when connecting
to databases that do not support PDQPRIORITY, such as
Microsoft Access and Informix Standard Engine, or when
submitting queries to a uniprocessor server. If any value
other than the default is specified for this property,
MetaCube attempts to set PDQPRIORITY for all queries
upon connection to an Informix RDBMS.

MyMetabase.PDQPriority = 50

For more information about PDQPriority, see the
INFORMIX-OnLine Dynamic Server Administrator’s Guide.

PublicUser Read-only string: Identifies the user empowered to save
queries and filters that other users can access in
MetaCube Explorer and MetaCube for Excel. This string
is set to metapub for current releases of Explorer and
MetaCube for Excel. In future releases, this property may
be variable, in which case applications should use this
property to identify the public user.

MsgBox MyMetabase.PublicUser

Role A string containing the database role of the currently
connected user. If a user is not connected, the string is
empty.

MyMetabase.Role = “Analyst”

Table 3-1 Metabase Class of Objects: Properties (continued)

Property Description/Example
3-10 MetaCube Application Programmer’s Manual

Metabase Methods
Metabase Methods
Metabase properties allow you to define or retrieve different characteristics
of the Metabase object. Metabase methods allow you to perform different
operations on a Metabase, such as logging in, creating a new DSS System, or
opening a query. You should already be familiar with the most common
Metabase method, the Connect method. The functionality of Metabase
methods falls into three categories:

■ Connecting and disconnecting to the relational database and
opening and closing DSS Systems

SuppressDialogs Boolean: A true value precludes the MetaCube Status
window from appearing in your application. Defaults to
true.

MyMetabase.SuppressDialogs = True

Verified This property stores a long value returned by the Verify
method indicating that the metadata definition for a
Metabase object is one of the following:

■ completely valid

■ invalid because an object in the collections owned
directly or indirectly by the Metabase object is invalid

■ invalid because the Metabase object itself is invalid

If you have not invoked the Verify method, this property
defaults to VerifiedNever, indicating that the metadata is
unverified. The significance of each of the numeric codes
stored by the Verified property is explained in Table 3-6
on page 3-16.

MsgBox MyMetabase.Verified

VerifyResults This property stores the ValueList returned by the Verify
method describing any errors in the Metabase object’s
metadata. This will not include errors in the metadata for
objects owned by the Metabase object.

MsgBox MyMetabase.VerifyResults.TabbedValues

Table 3-1 Metabase Class of Objects: Properties (continued)

Property Description/Example
Metabase Methods 3-11

Metabase Methods
■ Creating and deleting DSS Systems and subsequently updating the
metadata

■ Saving queries and opening or deleting saved queries.

Table 3-2 summarizes the Metabase object class’s methods.

Table 3-2 Metabase Class of Objects: Methods

Method Description/Example

CloseDSSSystem Closes existing DSS System.

MyMetabase. CloseDSSSystem

Connect Logs in to RDBMS; opens a DSS System and implicitly
calls the OpenDSSSystem method.

MyMetabase.Connect

CreateNew Creates new DSS System. The name of the DSS System is
specified by Metabase’s Name property. Only users who
have been granted access to Secure Warehouse (meaning
the property User.SecureUser is set to true) can call this
method.

MyMetabase.CreateNew

DBLogin Logs in to RDBMS; does not open DSS System.

MyMetabase.DBLogin

DBLogout Disconnects MetaCube from RDBMS.

MyMetabase.DBLogout

DeleteMetamodel Deletes DSS System from metadata in RDBMS.
Arguments: DSS System Name. Only users who have been
granted access to Secure Warehouse (meaning the
property User.SecureUser is set to true) can call this
method. This method immediately deletes a DSS System.
You do not have to call Metabase.Save for this method to
take effect. Any references to the deleted DSS System as
the default DSS System are set to null.

MyMetabase. DeleteMetamodel "Demo"
3-12 MetaCube Application Programmer’s Manual

Metabase Methods
DeleteQuery Deletes from RDBMS’s metadata the definition of a query,
as saved by the SaveAs method of the QueryClass of
Objects. Arguments: the query’s name, as a string; the
query’s author, as a string; the folder into which the query
has been saved, as an object.

MyMetabase.DeleteQuery “Saved Query”, _
 “MetaDemo”, FolderObject

Disconnect Closes DSS System; disconnects from RDBMS.

MyMetabase.Disconnect

DoSQL Executes a non-SELECT SQL statement.

MyMetabase. DoSQL "CREATE TABLE . . ."

OpenDSSSystem Opens the DSS System specified by Metabase.Name. This
method is equivalent to OpenDSSSystem2 when that
method is set to True.

MyMetabase. OpenDSSSystem

OpenQuery Returns an instance of a Query object bearing the
definition of a saved query but none of the query’s
associated data, reports, or charts. Arguments: the query’s
name, as a string; the query’s author, as a string; and the
folder into which the query has been saved, as an object.

Set MyQuery = MyMetabase.OpenQuery _
(“Saved Query”, “MetaDemo”, _
MyMetabase.RootFolder)

OpenQueryStorage Returns a structured storage object representing a query
object and its result, as saved by the SaveStorage method
of the Query Class of Objects. This method, which is
actually beyond the OLE paradigm, can only be used in
C++ and other development environments that directly
support the COM interface.

Table 3-2 Metabase Class of Objects: Methods (continued)

Method Description/Example
Metabase Methods 3-13

Metabase Methods
RemoteConnect Using a user’s connection information stored in the
registry, this method connects a remote client, such as a
MetaCube Web Explorer, to the RDBMS and opens a DSS
System. Arguments: the user’s name, as a string; the user’s
password, as a string; and optionally, a DSS System name,
as a string. If no DSS System name is supplied, MetaCube
will use the user’s default DSS System.

MyMetabase.RemoteConnect “WebUser”, _
 “Password”, "Demo"

Save Saves changes in DSS System to RDBMS metadata. Only
users who have been granted access to Secure Warehouse
(meaning the property User.SecureUser is set to True) can
call this method.

MyMetabase.Save

SaveAs Saves all metadata in RDBMS describing a DSS System,
including folders, filters and queries, under a new name.
Arguments: New DSS System Name. Only users who
have been granted access to Secure Warehouse (meaning
the property User.SecureUser is set to true) can call this
method. When you use SaveAs to create a new DSS,
remember that initially no users have access to the new
DSS System. The data warehouse administrator must give
user’s access to the new DSS System, or you must use the
programming interface to grant access to users.

MyMetabase.SaveAs “New Name”

Verify Reviews the metadata definitions represented by the
Metabase objects and other objects within its collections or
sub-collections, returning values to the Metabase object’s
Verified and VerifyResults properties.

MyMetabase.Verify

Table 3-2 Metabase Class of Objects: Methods (continued)

Method Description/Example
3-14 MetaCube Application Programmer’s Manual

Related Constants
Related Constants
Table 3-3 summarizes the numeric arguments for the ClientType property,
including the names of constants declared in the MetaCons.bas file.

Table 3-4 summarizes the numeric arguments for the ConnectDatabase
property, including the names of the constants declared in the MetaCons.bas
file.

Table 3-5 summarizes the numeric constants to be specified when setting the
DataSkip property.

Table 3-3 Client Type Constants

Development Environment MetaCons.bas Constant Name Constant

Visual Basic ClientTypeVB 1

Visual Basic for Applications ClientTypeExcel 2

C ClientTypeC 3

Table 3-4 Database Vendor Constants

Database Vendor MetaCons.bas Constant Name Constant

Microsoft Access DBVendorAccess 2

Informix Online DBVendorInformix 5

Table 3-5 Data Skip Constants

Data Skip Functionality MetaCons.bas Constant Name Constant

Abort query if any requested record is
unavailable.

DataSkipOff 0

Skip any unavailable records,
returning what values are available.

DataSkipOn 1

Accept database default for Data Skip
option.

DataSkipDefault 2
Related Constants 3-15

Related Constants
Table 3-6 below shows the numeric arguments returned by the Verify
method.

Table 3-6 Verify Codes

Verification Status MetaCons.bas Constant Name Constant

Object has never been verified VerifiedNever 0

Object verified successfully VerifiedGood 1

Object itself verifies, but other objects in
its collections or sub-collections do not

VerifiedBadBelow 2

Object itself fails to verify VerifiedBad 3
3-16 MetaCube Application Programmer’s Manual

Metabase Collections
Metabase Collections
Figure 1-1 on page 1-9 offers a simplified view of MetaCube’s hierarchy of
object classes, representing a collection of Queries as the only collection
directly descended from the Metabase object. For the purposes of designing
the simple query application featured in the preliminary tutorial, a detailed
understanding of every collection spawned by the Metabase class of objects
was unnecessary. Actually, ten collections belong to the Metabase object, as
shown in Figure 1-2 on page 1-10 and described in Table 3-7.

Table 3-7 Metabase Class of Objects: Collections

Collection Description/Example of Add Method

Dimensions Consists of all dimensions in a DSS System. A subset of this
collection belongs to the FactTable Class of objects. If an item
exists in both collections, deleting an item from this collection
also deletes the item from the FactTable objects' collections. To
instantiate a Dimension object, you must specify the name of
the dimension, its type, the name of the database schema
owning the underlying table, the name of the table itself, the
name of the column joining that table to the fact table, and the
name of the column storing aggregate level information.

MyMetabase.Dimensions.Add
"Time", DimensionTypeTime, "MetaDemo", _
"TIME_DIMENSION", "DAY_CODE", "AGG_LEVEL"

See “The Dimension Collection’s Add Method” on page 4-4
for more details.

DSSSystems Consists of all DSSSystem objects in metadata. These objects
are loaded after the user connects to the database. This
collection does not feature an Add method, as MetaCube
generates the items within this collection by reviewing the
metadata tables.

See “The DSSSystem Class of Objects” on page 10-3 for more
details.
Metabase Collections 3-17

Metabase Collections
Extensions Consists of libraries of functions, developed as extensions to
MetaCube’s analytical engine. Consultants, third-party
vendors, and sophisticated customers can develop extensions
in C++ from a template provided with MetaCube’s analysis
engine. The syntax for developing extensions is unrelated to
the programming interface of MetaCube’s hierarchy of object
classes. The code is subsequently compiled in a separate file,
which functions like a dynamic link library. Each extension
may consist of one or many functions. Any time an appli-
cation refers to an individual function, the entire extension is
invoked. Once developed, extensions are registered through
MetaCube’s programming interface by instantiating an
Extension object, with an argument that identifies the file
containing compiled code.

MyMetabase.Extensions.Add _
 “c:\metacube\mcplgmn.mcx”

When instantiating an Extension object, include the name of
the extension in MetaCube’s initialization file, metacube.ini,
enabling the extension whenever MetaCube launches.

FactTables Consists of all fact tables in this DSS System. To instantiate a
FactTable object you must specify the name of the object, the
name of the database schema owning the underlying table,
and the name of the database table itself that represents the
fact table.

MyMetabase.FactTables.Add "Sales Transactions", _
 "METADEMO", "SALES_TRANSACTIONS"

See “The FactTable Class of Objects” on page 6-3 for more
details.

Queries Consists of any saved queries that have been opened during a
session. Ad hoc queries are also instantiated and defined
within this collection, as shown in MetaCube API Exercise 2
on page 2-7. To instantiate a Query object, specify the name of
the new object as an argument to the Add method.

MyMetabase.Queries.Add "My New Query"

See “The Query Class of Objects” on page 8-3 for more details.

Table 3-7 Metabase Class of Objects: Collections (continued)

Collection Description/Example of Add Method
3-18 MetaCube Application Programmer’s Manual

Metabase Collections
QueryBackJobs Consists of all QueryBack jobs for a DSS System that were
submitted by this user, both pending and complete. The
collection of QueryBackJob objects does not feature a formal
Add method, as the Submit method of the Query object
actually creates a QueryBack job. See “The QueryBackJob
Class of Objects” on page 8-71 for more details.

RootFolder This is a special type of collection, consisting of only one
object, which itself can be the parent of other objects of a
similar type. This object is the highest level object repre-
senting the storage interface queries and filters saved in
MetaCube's metadata. See “The Folder Class of Objects” on
page 7-3. This collection does not feature an Add method, as
any DSS System can only have one RootFolder object, which
exists by default.

Schemas Consists of all physical database schemas or table owners
within the RDBMS and is useful for verifying metadata. This
collection does not feature an Add method, as MetaCube
generates the items within this collection by reviewing the
database’s system tables. See “Schemas, Tables, Columns” on
page 9-3 for more details.

SystemMessages Consists of all System Messages for a DSS System. To instan-
tiate a SystemMessage object, deploy the Add method,
specifying the text of the message and the date and time of its
creation.

MyMetabase.SystemMessages.Add “Data Loaded”, _
 MyMetabase.CurrentTime

See “The SystemMessage Class of Objects” on page 11-3 for
more details.

Users Consists of User objects representing MetaCube users. To
instantiate a new User object, deploy the Add method for the
Users collection, specifying the name of the new user.

MyMetabase.Users.Add “New User”

See “The User Class of Objects” on page 10-4 for more details.

Table 3-7 Metabase Class of Objects: Collections (continued)

Collection Description/Example of Add Method
Metabase Collections 3-19

Metabase Collections
The Metabase object’s collections encompass the entire range of MetaCube
functionality. The Dimensions and FactTables collections represent a DSS
System’s metadata, which describes the Data Warehouse in natural business
terms and configures the MetaCube engine to your data model.

Applications such as Warehouse Manager define the properties and invoke
the methods of the objects contained within the Dimensions and Fact Tables
collections to generate MetaCube’s metadata. Applications such as Explorer
review the properties of these objects to display the available attributes and
measures on which to query and to filter. The SQL that the MetaCube engine
generates depends on the descriptions of fact tables, aggregate tables,
dimension tables and attribute tables represented by these collections.

Objects in the FactTables and Dimensions collections thus lay the foundation
for your Data Warehouse to process multi-dimensional queries. Objects in
the Filters, Queries, and QueryBackJobs collections actually define those
queries in the multi-dimensional terms inscribed by objects in the Dimen-
sions and FactTables collections.

When instantiating a QueryCategory object, for example, you must include
an argument identifying the name of an Attribute object. The QueryCategory
object belongs to a collection defining the attributes for a particular Query
object. The Attribute object belongs to a collection owned by a Dimension
object generally defining the available attributes for any query within a
particular DSS System.

The RootFolder object class owns hierarchical collections of folders and sub-
folders by which the storage of Filter and Query objects is organized.

Objects in the Schema collection and their descendants represent a data
dictionary of physical schemas, tables, and columns in the relational
database. Objects in the Schema collection do not, however, store any of the
corresponding multi-dimensional properties of these database structures. As
such, this collection exists purely as a reference for supplying values to the
properties of objects in the FactTables and Dimensions collection, which map
the relationship between physical structures and multi-dimensional terms
and logic.

The System Messages collection of objects store string information for distrib-
uting information to MetaCube users, such as the status of the database or the
maintenance schedule.
3-20 MetaCube Application Programmer’s Manual

Metabase Collections
The User and DSSSystem collections allow you to manage access to data the
same as an administrator would do using MetaCube Secure Warehouse. You
can control data by identifying which users can access DSS Systems,
assigning mandatory filters to those users to limit what data they can see
within a DSS System, and restricting access to QueryBack jobs so users can
query data only at certain times.
Metabase Collections 3-21

Metabase Collections
3-22 MetaCube Application Programmer’s Manual

4
Chapter
The Dimension Class of Objects
and Related Collections
The Dimension Class of Objects 4-3
The Dimension Collection’s Add Method. 4-4
Dimension Properties 4-4
Dimension Methods 4-6
Related Constants 4-7
Dimension Collections 4-8

The DimensionElement Class of Objects 4-8
The DimensionElement Collection’s Add Method 4-9
DimensionElement Properties. 4-9
DimensionElement Methods 4-12
DimensionElement Collections 4-12

The Attribute Class of Objects 4-13
The Attribute Collection’s Add Method 4-14
Attribute Properties 4-15
Attribute Collections 4-18

4-2 Meta
Cube Application Programmer’s Manual

This chapter introduces the Dimension class of objects and all the
collections directly or indirectly belonging to objects of the Dimension class.
The Dimension class and the collections belonging directly or indirectly to it
allow you to develop procedures that create, edit, or access MetaCube’s
metadata.

The Dimension Class of Objects
A Dimension object represents a set of hierarchically-related categories for
grouping transactional data. For example, a Dimension Object could
represent a Time Dimension, which stores the relationships between days,
weeks, months and years.

In Explorer, each dimension appears in a separate listbox, which displays
that dimension’s attributes. An icon, a default filter, and a set of attribute
names are associated with that dimension

Each category, or level in the dimensional hierarchy, corresponds to a Dimen-
sionElement object. MetaCube navigates from one level in the hierarchy to
another by joining columns represented by a DimensionElement object. Such
columns typically identify each value within that hierarchy level by a unique
numeric code. Because the user typically never views these codes, only appli-
cations performing internal functions on MetaCube’s metadata will deploy
DimensionElement objects.

Instead, users define the groupings for their queries by attributes, repre-
sented by the Attribute object, which store descriptive terms associated with
a particular DimensionElement object. We will discuss both dimension
elements and attributes as collections that belong to a particular dimension.
The Dimension Class of Objects 4-3

The Dimension Collection’s Add Method
The Dimension Collection’s Add Method
The add method for the dimension collection requires six arguments, which
you must enclose in parentheses to return the instance of the Dimension
object to an object variable. Each of the six arguments corresponds to one of
the properties listed in and is of the form:

MyMetabase.Dimensions.Add Name, DimensionType, Schema, _
Table, Column, AggLevelColumn

where MyMetabase is our instantiation of the Metabase object. The following
hypothetical example creates an object for the Time Dimension:

Set MyDimension = MyMetabase.Dimensions.Add _
("Time", DimensionTypeTime, "MetaDemo", _
"TIME_DIMENSION", "DAY_CODE", "AGG_LEVEL")

Dimension Properties
The properties of the Dimension object itself largely correspond to the fields
in MetaCube Warehouse Manager’s Dimension Tab.

Table 4-1 Dimension Class of Objects: Properties

Property Description/Example

AggLevel-
Column

String. The dimension table column storing aggregate level
identifiers, which indicate the row in the dimension table where
summary tables can join to find unique values for each
dimension element.

MyDim.AggLevelColumn = "Agg_Level"

Attribute-
Names

ValueList of names for all of the dimension’s attributes.
Arguments: Display type constants, to display items validated
for queries, filters, or both. See below.

MsgBox MyDim.AttributeNames (2).TabbedValues

BaseElement Object. The dimension element that represents the lowest-level
of detail in the dimensional hierarchy. Read-only.

MsgBox MyDim.BaseElement.Name
4-4 MetaCube Application Programmer’s Manual

Dimension Properties
Column String. The dimension table column joining that table to the fact
table. This column also typically corresponds to the base
dimension element.

MyDim.Column = "DAY_CODE"

Current-
PeriodColumn

String. The column in the dimension table storing the current
period flag. Null for non-time dimensions.

MyDim.CurrentPeriodColumn = "CURRENT"

DefaultFilter Object. The saved filter for this dimension identified as the
default, if a default exists.

MsgBox MyDim.DefaultFilter.Name

Dimension-
Type

Integer. Indicates if a dimension stores time relationships. Time
dimensions have different properties and requirements than
other dimensions. Default: DimensionTypeNonTime. See tables
of constants.

MyDim.DimensionType = DimensionTypeTime

IconBitmap String. The icon associated with a dimension is converted from a
bitmap to string information, and stored in the database. This
value’s property is thus the string representation of the icon.

MsgBox MyDim.IconBitmap

IconName String. Name of original bitmap file for storing icon that repre-
sents this dimension.

MyDim.IconName = "TIME.ICO"

Name String. Name of the dimension. Default property.

MyDim.Name = "Time"

NoFilterLabel String. A label indicating that no filters have been applied to the
parent dimension. No default.

MyDim.NoFilterLabel = "All Products"

Parent Object. The Metabase object.

MsgBox MyDim.Parent

Schema String. The physical location of the dimension table.

MyDim.Schema = "MetaDemo"

Table 4-1 Dimension Class of Objects: Properties (continued)

Property Description/Example
Dimension Properties 4-5

Dimension Methods
Dimension Methods
Aside from the Verify method, which reviews the validity of the Dimension
object’s metadata properties, the Dimension class of objects has only one
method, the WriteIcon method, which creates an icon from a value stored in
the database. Warehouse Manager originally generates the string value from
an icon file in order to store the icon’s image in the database. Warehouse
Manager accomplishes this task by assigning values to two Dimension object
properties:

MyDimension.IconName = "TIME.ICO"
MyDimension.IconBitMap = "AF50...”

Table String. The name of the dimension table.

MyDim.Table = "TIME_DIM"

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for a Dimension object is
one of the following:

■ Completely valid

■ Invalid because an attribute or dimension element object
belonging to the Dimension object is invalid

■ Invalid because the Dimension object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyDimension.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the Dimension object’s metadata. This
will not include errors in the metadata for objects owned by the
Dimension object.

MsgBox MyDimension.VerifyResults.TabbedValues

Table 4-1 Dimension Class of Objects: Properties (continued)

Property Description/Example
4-6 MetaCube Application Programmer’s Manual

Related Constants
The WriteIcon method converts this string value, represented by the
Dimension object’s IconBitmap property, back to an icon file, as recognized
by the IconName property. When invoking this method, you must specify as
an argument the directory in which you want the icon file created, as in the
following example:

MyDimension.WriteIcon "C:\METACUBE"

Related Constants
Table 4-2 summarizes the numeric arguments for the AttributeNames
property, including the names of constants declared in the MetaCons.bas file.
The MeasureNames property of the FactTable object, which also requires a
numeric argument specifying the type(s) of items to display, can use the same
constants explained below.

Table 4-3 summarizes the numeric argument for the DimensionType
property, including the names of constants declared in the MetaCons.bas file.

Table 4-2 Display Type Constants for Attributes and Measures

Property MetaCons.bas Constant Name Constant

Display items valid for filtering DisplayStyleFilter 1

Display items valid for querying DisplayStyleQuery 2

Display items valid for filtering and
querying

DisplayStyleBoth 3

Table 4-3 Dimension Type Constants

Type of Dimension MetaCons.bas Constant Name Constant

Time dimension DimensionTypeTime 1

Any other type of dimension DimensionTypeNonTime 0
Related Constants 4-7

Dimension Collections
Dimension Collections
After defining the general characteristics of a dimension, we can specify in
greater detail each of the components of a dimension. They are organized
into two collections: the dimension elements that define the hierarchy levels
within a dimension and the attributes that in turn describe each level. Table
4-4 summarizes these collections:

We discuss each of the collections in the pages that immediately follow,
beginning with the collection of DimensionElement objects, because
Attribute objects belong to collections owned both by Dimension and by
DimensionElement objects.

The DimensionElement Class of Objects
As noted previously, a DimensionElement object identifies the column in the
relational database defining a particular level in a dimensional hierarchy.
This column typically stores a unique code for each value at that level, and
can join to fact or summary tables to enable MetaCube to consolidate or
group data by higher levels of summarization in the dimension table. By
drilling down or up on attribute values associated with a particular
dimension element, users can easily navigate through a dimensional
hierarchy.

Since most users query on the descriptive terms represented by Attribute
objects, front-end applications such as Explorer may never instantiate this
object.

Table 4-4 Dimension Class of Objects: Collections

Collection Description

Attributes Consists of the Attribute objects describing every dimension
element within this dimension. Each DimensionElement object
individually owns a subset of this collection, containing the
Attribute objects corresponding to that dimension element.

Dimension-
Elements

Consists of a set of hierarchically related DimensionElement
objects, each representing a column in the dimension table.
4-8 MetaCube Application Programmer’s Manual

The DimensionElement Collection’s Add Method
The DimensionElement Collection’s Add Method
The add method for instantiating a DimensionElement object requires three
arguments that correspond to several properties described in the next
section. In order of appearance, these arguments are the dimension element’s
name, the column storing the actual values of the dimension element, which
also joins the dimension element to a separate attribute table if it exists, and
the identifier within the Aggregate Level column flagging the rows in the
dimension element column that store only distinct values of the dimension
element:

MyDimension.DimensionElements.Add Name,
DimensionToAttributeColumn, AggLevel

For example, to add a dimension element named “Brand,” stored in a column
named “BRAND_CODE” with an aggregate level value of “4,” we would
enter the following command:

MyDimension.DimensionElements.Add "Brand", "BRAND_CODE", 4

DimensionElement Properties
Many of a DimensionElement object’s properties define the location of the
attributes that describe that element. A star model stores attributes in the
same table as the columns corresponding to DimensionElement objects,
whereas a snowflake model stores attributes in separate tables. MetaCube
also supports partial snowflakes, in which the attributes describing some
dimension elements are stored in separate tables, while the attributes
describing other elements remain in the dimension table.

If attributes describing DimensionElement objects are stored in the same
table as the element itself, you need not specify the DimensionElement
properties that describe the location of these attributes. If the values of such
properties as the AttributeTable property are null, MetaCube assumes the
attributes are stored in the table identified by the Dimension object’s Table
property. Such properties, by default, are empty.
The DimensionElement Collection’s Add Method 4-9

DimensionElement Properties
Table 4-5 summarizes the properties of the DimensionElement object.

Table 4-5 DimensionElement Class of Objects: Properties

Property Description/Example

AggLevel A string value, stored in the column identified by the
Dimension object's AggLevelColumn property. Indicates at
which rows tables can join to dimension tables to find
distinct values for a given dimension element.

MyDimEl.AggLevel = "3"

AttributeSchema String. In snowflake or partial snowflake data models, the
attributes describing a dimension element may be stored in
tables separate from the dimension table. This attribute
specifies the physical location/schema storing the attribute
table for this dimension.

MyDimEl.AttributeSchema = "METADEMO"

AttributeTable String. In a snowflake model, the name of the attribute table
for this dimension element.

MyDimEl.AttributeTable = "BRANDS"

AttributeTo-
DimensionColumn

String. In a snowflake model, the column in the attribute
table used to join that table to the dimension table.

MyDimEl.AttributeToDimensionColumn = _
 "BRAND_CODE"

Base Boolean. True if the dimension element represents the
lowest-level in the dimensional hierarchy, false otherwise.

MyDimEl.Base = True

DefaultAttribute Object. Represents the default attribute for the dimension
element; displayed when users drill up/down to that
element. Read-only.

MsgBox MyDimEl.DefaultAttribute.Name

Dimension Object. Identifies the Dimension object to which this
element belongs. The Parent property returns the same
value, but this property may seem more intuitively named
to developers. Read-only.

MsgBox MyDimEl.Dimension.Name
4-10 MetaCube Application Programmer’s Manual

DimensionElement Properties
DimensionTo-
AttributeColumn

String. The name of the column in the dimension table
storing the actual values of the dimension element. Also, in
a snowflake model, the name of the column in the
dimension table that joins that table to the attribute table.

MyDimEl.DimensionToAttributeColumn = _
 "BRAND_CODE"

Name String. Stores the name of the dimension element. Default
property.

MsgBox MyDimEl.Name

Parent Object. Identifies the Dimension object to which this
element belongs.

MsgBox MyDimEl.Parent.Name

Verified This property stores a long value returned by the Verify
method indicating that the metadata definition for a
DimensionElement object is one of the following:

■ completely valid

■ invalid because at least one attribute describing the
dimension element is invalid

■ invalid because the DimensionElement object itself is
invalid

If you have not invoked the Verify method, this property
defaults to VerifiedNever, indicating that the metadata is
unverified. Verifying dimension elements that have not
been incorporated into the dimensional hierarchy returns
an error. The significance of each of the numeric codes
stored by the Verified property is explained in Table 3-6 on
page 3-16.

MsgBox MyDimEl.Verified

VerifyResults This property stores the ValueList returned by the Verify
method describing any errors in the DimensionElement
object’s metadata. This will not include errors in the
metadata for Attribute objects belonging to the Dimension-
Element object.

MsgBox MyDimEl.VerifyResults.TabbedValues

Table 4-5 DimensionElement Class of Objects: Properties (continued)

Property Description/Example
DimensionElement Properties 4-11

DimensionElement Methods
DimensionElement Methods
The DimensionElement class of objects features only two methods, which
either add or remove other elements from a dimension element’s consoli-
dation path in the dimensional hierarchy. The AddDrillUp method includes
a dimension element in the DrillUps collection described on the following
page, indicating that the level described by one dimension element exists
directly below the hierarchy level of another dimension element.

For example, a DimensionElement object representing days may consolidate
to DimensionElement objects representing weeks and months. In this
example, weeks themselves do not consolidate to months, as there is not an
even number of weeks in each month. Consequently, both weeks and month
hierarchy levels sit directly above the day hierarchy level.

Deploying the AddDrillUp method requires you to specify as an argument
the DimensionElement object to which you drill up, as shown in this section
of sample code:

Set DimElLower = MyDimension.DimensionElements.Item("Day")
Set DimElHigher = MyDimension.DimensionElements.Item("Week")
DimElLower.AddDrillUp DimElHigher

To remove a DimensionElement object from another DimensionElement
object’s consolidation path, deploy the RemoveDrillUp method:

DimElLower.RemoveDrillUp DimElHigher

Please note that an AddDrillDown method does not exist, as MetaCube
requires you to describe a hierarchy from the bottom-up such that a single
DimensionElement object sits at the base of any dimensional hierarchy.

DimensionElement Collections
Each level in a dimensional hierarchy may be described by many different
attributes and may consolidate to several different hierarchy levels. For
example, the Brand dimension element may be described by Brand Name
and Brand Manager attributes. This element may consolidate to two different
levels in the hierarchy, represented by Company and Product Class elements.
4-12 MetaCube Application Programmer’s Manual

The Attribute Class of Objects
The DimensionElement object collections represent the attributes describing
a dimension element, the elements directly below the dimension element in
the dimensional hierarchy, and the elements directly above the dimension
element in the dimensional hierarchy. A DimensionElement object may thus
store other DimensionElement objects in a collection. Dimension elements in
a simple hierarchy will likely only contain one dimension element in these
collections.

The Attribute Class of Objects
The Attribute class of objects describes in MetaCube’s metadata the
descriptive categories by which users define queries. Attributes describe
dimension elements and are hierarchically organized in the order of the
dimension elements they describe.

Table 4-6 DimensionElement Class of Objects: Collections

Collection Description/Example

Attributes A collection of Attributes describing the dimension element.

MsgBox MyDimEl.Attributes.Names

DrillDowns A collection of DimensionElement objects that exist at hierarchy
levels directly below the parent.

MsgBox MyDimEl.DrillDowns.Names

DrillUps A collection of DimensionElement objects that exist at hierarchy
levels directly above the parent.

MsgBox MyDimEl.DrillUps.Names
The Attribute Class of Objects 4-13

The Attribute Collection’s Add Method
The distinction between an Attribute object and a QueryCategory object,
which the exercises prominently featured, may confuse some. To incorporate
an attribute in the definition of a particular query, you must instantiate a
QueryCategory object in a collection owned by a Query object. The Attribute
class of objects differs from this QueryCategory class of objects insofar as its
properties describe the physical structure of the database. A QueryCategory
object can simply identify an Attribute object’s name to enable MetaCube to
generate SQL on the basis of the Attribute object’s properties. The Attribute
class of objects thus represents the library of attributes available for a query,
whereas the QueryCategory object represents an attribute selected from that
library for inclusion in a query’s definition.

Although attributes describe a dimension element, you can view the
attributes for a single dimension element or for all of the dimension elements
in a dimension. Both Dimension and DimensionElement objects own collec-
tions of Attribute objects: the DimensionElement object’s collection includes
only those attributes that describe that dimension element; the Dimension
object’s collection of attributes owns that dimension element’s attributes in
addition to attributes describing other elements within the dimension. A
DimensionElement object’s collection of Attribute objects is thus a subset of
the Dimension object’s collection of Attribute objects.

The Attribute Collection’s Add Method
Although an Attribute object belongs to both a collection owned by a
Dimension object and a collection owned by a Dimension Element object, we
must instantiate the object as a member of a dimension element’s collection,
the parent that the attribute actually describes. MetaCube requires two
arguments in the instantiation command: the name of the attribute, and the
database column storing that attribute’s values. In this example, we instan-
tiate an attribute named “Brand Name,” the values of which are stored in the
column “BRAND_NAME”:

MyDimension.Attributes.Add "Brand", "BRAND_NAME"

The name of the database table to which this column belongs is specified as
a property of the DimensionElement object, if your data model is a
snowflake, or as a property of the Dimension object, if your data model is a
star.
4-14 MetaCube Application Programmer’s Manual

Attribute Properties
Attribute Properties
The properties of an Attribute object correspond to many of the fields in
Warehouse Manager for an attribute, specifying the physical characteristics
of the attribute, balloon help, sample values, and other information about the
attribute. Please note that, aside from the standard Verify method, the
Attribute object has no methods. Table 4-7 summarizes the properties of the
Attribute class of objects.

Table 4-7 Attribute Class of Objects: Properties

Property Description/Example

BalloonHelp String. Stores a brief explanation of the attribute for pop-up
balloon help in Explorer and other applications.

MyAttribute.BalloonHelp = "Isn't it obvious, stupid?"

Column String. The column in the attribute or dimension table storing the
actual attribute values.

MyAttribute.Column = "BRAND_NAME"

ColumnType Integer. Identifies the type of data stored in the attribute column:
character, numeric, date, or other. See constants below.

MyAttribute.ColumnType = DataTypeNumeric

Default Boolean. Indicates whether the attribute represents the default
description of a dimension element. MetaCube Explorer displays
the default attribute of a dimension element whenever a user
drills up or down to that element, but other applications may use
this information differently. Complements dimension element’s
read-only DefaultAttribute property. Defaults to false. As there
can only be one default attribute for any given dimension
element, setting the Default property of one attribute to True
reverts any other attributes within that dimension element’s
collection to False.

MyAttribute.Default = True

Description String. Stores a long description of the attribute for adminis-
trative purposes.

MyAttribute.Description = "Data from a legacy system..."

Dimension Object. The Dimension object to which the attribute belongs.
Read-only.

MsgBox MyAttribute.Dimension.Name
Attribute Properties 4-15

Attribute Properties
Dimension-
Element

Object. The DimensionElement object described by the attribute;
also the direct owner of the attribute’s collection, as indicated by
the Parent property. Read-only.

MsgBox MyAttribute.DimensionElement.Name

DisplayStyle Long. Indicates whether the attribute is valid for display in query
and/or filter interfaces. See the display constants listed in Table
4-2 on page 4-7.

MyAttribute.DisplayStyle = DisplayStyleBoth

Example1 String. Stores a sample value of the attribute in the metadata,
which copies to client. Explorer retrieves this value to populate a
sample report before executing query. Defaults to empty.

MyAttribute.Example1 = "Alden"

Example2 String. Stores a second sample value of the attribute. Defaults to
empty

Example3 String. Stores a third sample value of the attribute. Defaults to
empty.

ListSQL String. Stores a custom SQL command retrieving the values of
the attribute from the database, typically for display as a set of
choices on which the user can filter.

MyAttribute.ListSQL = _
 "SELECT * FROM GENDER_VALUES"

Name String. Attribute name. Default property.

MyAttribute.Name = "Brand Name"

Parent Object. The DimensionElement object that owns the collection to
which the attribute belongs.

MsgBox MyAttribute.Parent.Name

ScreenOrder Integer. Determines the order in which attributes appear in an
interface; defaults to the order of instantiation.

MyAttribute.ScreenOrder = 1

Table 4-7 Attribute Class of Objects: Properties (continued)

Property Description/Example
4-16 MetaCube Application Programmer’s Manual

Attribute Properties
SortColumn String. Identifies the name of a numeric column other than the
attribute column on which to perform a sort. The column
specified is often a sequential dimension element. Instead of
sorting attribute values directly, MetaCube can sort a set of
values associated with each attribute. If, for example, the column
representing a dimension element is identified as the
SortColumn for an attribute, MetaCube will sort the attribute
values based on the numeric values of the dimension element.
Attribute values associated with a dimension element of a low
numeric value will appear first, and those associated with a
dimension element of a high numeric value will appear last. The
attribute values will continue to be displayed in a sorted report,
but the column on which the sort is based will not. The
SortColumn property is particularly useful for attributes of a
time dimension, as different date formats may preclude
MetaCube from directly sorting such attributes correctly.
MetaCube can accurately sort dates regardless of date format by
basing the sort on the sequential dimension element that
enumerates each date. Please note that the column identified by
this property must be in the same table as the column on which
the attribute itself is based. By default, MetaCube sorts on the
attribute value itself, in which case this property should remain
empty or blank.

MyAttribute.SortColumn = “DAY_CODE”

ValueList ValueList. A list of values for this attribute, retrieved by
MetaCube and stored in the metadata directly; allows applica-
tions to display filter choices rapidly. Read-only.

MsgBox MyAttribute.ValueList.TabbedValues

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for an Attribute object is
either:

■ completely valid

■ invalid because the Attribute object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyAttribute.Verified

Table 4-7 Attribute Class of Objects: Properties (continued)

Property Description/Example
Attribute Properties 4-17

Attribute Collections
Table 4-8 summarizes the constants stored by the ColumnType property of
the Attribute class of objects.

Attribute Collections
The collections of an Attribute object contain the attributes to which a user
can drill from a value of the original attribute. The DrillUp collection consists
of Attribute objects that you can directly reach by drilling up, whereas the
DrillDown collection consists of Attribute objects that you can directly reach
by drilling down.

The attributes included in each collection actually depend on dimension
elements, which define the actual dimensional hierarchy. Associated with
each dimension element is a default attribute, identified as such by the
Default property of the Attribute object. When drilling to a new hierarchy
level, a user cannot see all of the attributes describing a dimension element,
only the default attribute for that dimension element. An attribute’s drill
collections thus contain only default attributes for dimension elements that
sit either directly below or above the original attribute’s dimension element
in the hierarchy.

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the object’s metadata.

MsgBox MyAttribute.VerifyResults.TabbedValues

Table 4-8 Column Type Properties

Data Type MetaCons.bas Constant Name Constant

Character DataTypeChar 0

Numeric DataTypeNumeric 1

Date DataTypeDate 2

Other DataTypeUnsupported 3

Table 4-7 Attribute Class of Objects: Properties (continued)

Property Description/Example
4-18 MetaCube Application Programmer’s Manual

Attribute Collections
For example, a Regional Manager attribute may describe the Region level of
detail in a dimensional hierarchy. Directly below the Region dimension
element may sit District and City levels of detail, such that both cities and
districts consolidate to regions but cities do not roll up to districts, nor vice-
versa. If the default attributes for district and city are City Name and District
Name, the Attributes objects representing City Name and District Name will
belong to a DrillDowns collection owned by the original Attribute object,
named Regional Manager.

Table 4-9 summarizes the Attribute object’s collections.

Table 4-9 Attribute Class of Objects: Collections

Collection Description/Example

Drill-
Downs

A collection of Attribute objects that you can drill down to from the
attribute. The attributes in this collection are limited to the default
attributes for a set of dimension elements. In the dimensional
hierarchy, this set of dimension elements sits directly above the
dimension element described by the attribute. A simple hierarchy
will feature only one element at the higher hierarchy level and one
default attribute describing that element.

MsgBox MyAttribute.DrillDowns.Names

DrillUps A collection of Attribute objects that you can drill up to from the
attribute. The attributes in this collection are limited to the default
attributes for a set of dimension elements. In the dimensional
hierarchy, this set of dimension elements sits directly below the
dimension element described by the attribute. A simple hierarchy
will feature only one element at the lower hierarchy level and one
default attribute.

MsgBox.MyAttribute.DrillUps.Names
Attribute Collections 4-19

Attribute Collections
4-20 MetaCube Application Programmer’s Manual

5
Chapter
Extensions
The Extension Class of Objects 5-3
The Extensions Collection’s Add Method 5-4
Extension Properties 5-5
MetaCube API Exercise 14: Displaying Functions within an Extension

and Displaying Arguments for Those Functions 5-6

The Main MetaCube Extension Functions 5-8
Extension Functions as QueryItem Expressions. 5-9

The Absolute Change Function 5-11
MetaCube API Exercise 15: The Absolute Change Function . . . 5-13

Fraction of Grand Total. 5-14
Fraction of Orthogonal Total 5-16
Fraction of Page Total 5-17
Fraction of Subtotal 5-18
Fraction of Total 5-21
Moving Average 5-23
Moving Sum 5-25
Percent Change 5-27
Percent of Previous 5-29
Quantiles 5-31
Running Sums. 5-32
Top N . 5-34
Top Percentage 5-38
Nesting QueryItem Expressions. 5-39

Extension Functions as QueryCategory Expressions 5-40
Bucket . 5-40
Compare. 5-42

MetaCube API Exercise 16: Buckets and Comparisons 5-44

5-2 Meta
Cube Application Programmer’s Manual

This chapter introduces the programming interface for incorporating
extensions compiled in C++ into MetaCube. Once an extension has been
registered through the programming interface, the functions within that
extension can be deployed directly, as if the extension functions were native
to MetaCube’s analysis engine. This chapter also explains those functions
that have been created as standard extensions available with any MetaCube
release.

The Extension Class of Objects
Once you have developed and compiled an extension, register the functions
of that extension by instantiating an object of the Extension class of objects.
Registering an extension incorporates that extension’s functionality into
MetaCube until that extension is explicitly removed.

Although your instance of the Extension object class may release when your
application terminates, instantiating that object appends a permanent entry
to MetaCube’s initialization file, metacube.ini. This entry, called Enabled
Extensions, identifies the file name and path of the extension and appears
under the [Engine] header.

Whenever any application calls the MetaCube engine, the engine automati-
cally enables the extensions identified in the metacube.ini file. For each new
extension, it is thus necessary to instantiate an object of the Extension Class
only once.
The Extension Class of Objects 5-3

The Extensions Collection’s Add Method
The Extensions Collection’s Add Method
To instantiate an object of the Extension class, identify the parent Metabase
object, that object’s collection of Extension objects, and deploy the Add
method, general to all collections. The Add method requires one argument,
the file name of the extension:

MyMetabase.Extensions.Add “c:\metacube\mcplgmn.mcx”

The specified extension is registered in MetaCube’s initialization file, and is
automatically enabled upon all subsequent connections between an appli-
cation and the MetaCube engine. To disable an extension, deploy the Remove
method, also general to all collections:

MyMetabase.Extensions.Remove 0

You can identify an extension by file name or by index number:

Set MyExtension = MyMetabase.Extensions.Item _
(“c:\metacube\mcplgmn.mcx”)

Since referring to an Extension object by name is often inconvenient, you can
store an instance of the object in an object variable such as MyExtension.
5-4 MetaCube Application Programmer’s Manual

Extension Properties
Extension Properties
The properties of an object of the Extension class store information about an
extension for a programmer’s referral, but few, if any of these properties can
be usefully incorporated into an application.

Table 5-1 The Extension Class of Objects: Properties

Property Description/Example

Arguments Stores a read-only ValueList of arguments required by each
function, in the order in which they are to be specified. When
retrieving arguments for a function, the name of the function for
which arguments are to be retrieved must be specified.

MsgBox MyExtension.Arguments “FracOTot”

Argument-
Types

Stores a read-only ValueList indicating the type of each
argument for a function, compiled in the same order as the
arguments to which that list corresponds. When retrieving
argument types for a function, the name of the function for
which argument types are to be retrieved must be specified.

MsgBox MyExtension.ArgumentTypes “FracOTot”

Description Stores a read-only string description of the extension.

MsgBox MyExtension.Description

Enabled Stores a Boolean value indicating whether the extension has been
enabled.

MsgBox MyExtension.Enabled

FileName Stores the file name of the compiled extension code as a read-
only string.

MsgBox MyExtension.FileName

Functions Stores a read-only ValueList of the functions included in an
extension.

MsgBox MyExtension.Functions

Types Stores a read-only ValueList of the object classes to which the
function applies, typically either the string "QueryCategory" or
"QueryItem."

MsgBox MyExtension.Types
Extension Properties 5-5

Extension Properties
Because many of the properties of the Extension object class return ValueLists
including the names or arguments of all functions, application developers
may not want to compare such lists against one another to discover the
arguments of a particular function.

MetaCube API Exercise 14 on page 5-6 generates a report listing the name of
each function, the object class to which that function applies, the arguments
required by that function, and the argument types. This program can
evaluate any extension, provided the name of the extension and the number
of functions included in that extension are accurately specified by the
constants ExtensionName and NumberofFunctions.

As shown, the program displays information about the functions of the Main
MetaCube Extension. As subsequent exercises deploy these functions, the
report generated by this application may be a useful reference when reading
later sections of this guide.

MetaCube API Exercise 14: Displaying Functions within an
Extension and Displaying Arguments for Those Functions

1 Sub FunctionList()

2 'Declare Constants
3 Const ExtensionName = "c:\metav3\mcplgmn.mcx"
4 Const NumberofFunctions = 16

5 'Declare Variables
6 Dim MyMetabase As Object, _
7 MyExtension As Object, Count As Integer, _
8 FunctionNames As Variant, _
9 FunctionTypes As Variant, _

10 Arguments As String, _
11 ArgumentTypes As String

12 'Connect
13 Set MyMetabase = CreateObject("Metabase")
14 MyMetabase.Connect

15 'Enable Extension, If Necessary
16 Set MyExtension = _
17 MyMetabase.Extensions.Add(ExtensionName)

18 'Get Function Names and Types
19 Let FunctionNames = _
20 MyExtension.Functions.ArrayValues
21 Let FunctionTypes = _
22 MyExtension.Types.ArrayValues
5-6 MetaCube Application Programmer’s Manual

Extension Properties
23 'Report Headers
24 Worksheets.Item("Sheet1").Activate
25 ActiveSheet.Cells(1, 1) = "Function Name"
26 ActiveSheet.Cells(1, 2) = "Function Type"
27 ActiveSheet.Cells(1, 3) = "Arguments"
28 ActiveSheet.Cells(1, 4) = "Argument Types"
29 'Cycle Through Functions
30 For Count = 0 To NumberofFunctions
31 Let Arguments = _
32 MyExtension.Arguments(FunctionNames(Count))
33 Let ArgumentTypes = _
34 MyExtension.ArgumentTypes(FunctionNames(Count))
35 ActiveSheet.Cells(Count + 2, 1) = _
36 FunctionNames(Count)
37 ActiveSheet.Cells(Count + 2, 2) = _
38 FunctionTypes(Count)
39 ActiveSheet.Cells(Count + 2, 3) = Arguments
40 ActiveSheet.Cells(Count + 2, 4) = ArgumentTypes
41 Next Count

42 'Format Report
43 ActiveSheet.Range(ActiveSheet.Cells(1, 1), _
44 ActiveSheet.Cells(Count + 1, 4)).Select
45 Selection.EntireColumn.AutoFit

46 End Sub
Extension Properties 5-7

The Main MetaCube Extension Functions
The Main MetaCube Extension Functions
Included with every MetaCube executable is the Main MetaCube Extension,
a set of standard analytical functions called by MetaCube applications such
as MetaCube Explorer and MetaCube for Excel. The file name for this
extension, mcplgmn.mcx, can be found in the MetaCube directory. Once this
extension has been enabled, you can replace attribute and measure names
with complex expressions when instantiating QueryItems and
QueryCategories.

As discussed in “The QueryCategory Class of Objects” on page 8-20, Query-
Category and QueryItem objects typically refer to the names of attributes and
measures, as defined in MetaCube’s metadata by Attribute and Measure
objects:

MyQuery.QueryItems.Add “Brand”

The functions included in an extension perform operations on attribute and
measure values, manipulating or pre-processing data before it becomes
incorporated as an attribute or a measure in MetaCube’s virtual cube of data.

An extension’s functions can only return values to a QueryCategory or a
QueryItem object, and these functions can only be used as expressions when
instantiating such objects. When instantiating a QueryItem, the syntax for
such an expression is straightforward, with the name of the function and all
arguments enclosed in quotation marks, in the same position as the name of
a measure. Any arguments required by the function follow the function
name, in a list enclosed in parentheses. The syntax is of the general type:

MyQuery.QueryItems.Add “FUNCTION_NAME _
(Argument 1, Argument 2, Argument 3...)”

As the framework for developing attribute functions is more deeply
embedded in MetaCube and less flexible, no general syntax has been formu-
lated for QueryCategory expressions. Fortunately, application developers are
unlikely to encounter major new attribute functions. For an explanation of
the two attribute functions available in the Main MetaCube Extension, see
“Extension Functions as QueryCategory Expressions” on page 5-40.

The next section explains the functions that can be deployed as QueryItem
expressions.
5-8 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Extension Functions as QueryItem Expressions
The functions included in MetaCube’s main extension enable complex statis-
tical comparisons, summations, and averages. Two functions, TOPN and
TOPPCT, limit the number of rows displayed in a report to those rows
associated with the highest or lowest values of a measure. The TOPN
function replaces the TopN object class, which in previous releases belonged
to the MetaCube object class.

To help readers understand the operations a function performs on the values
of a measure, subsequent sample procedures always include as a separate
QueryItem the measure on which the function is being performed. Such
pairing is, however, unnecessary. A measure that is otherwise excluded from
the query can be included in an expression.

For example, a query can return gross revenues by quarter, the percentage
change in operating costs, where gross revenue is a simple measure, and
percentage change is a function performed on a second measure, operating
costs. In fact, a query could simply return percentage change in operating
costs without including any other measures.

Table 5-2 describes each of the functions in the main extension that apply to
measures. Each description assumes that measures are organized by
columns, their default orientation. A longer explanation of each function
follows, discussing how pivoting attributes and measures alters the result
returned by the function.

Table 5-2 Functions as QueryItem Expressions

Function Description/Example

ABS_CHANGE Compares the difference between columns of data.

MyQuery.QueryItems.Add “ABS_CHANGE (Units Sold)”

FracGTot Calculates the fraction of a value compared to the sum of all
values for every page, column, and row in the report. This
fraction can be multiplied by any factor, as specified in the
second argument.

MyQuery.QueryItems.Add “FracGTot (Units Sold, 100)”
Extension Functions as QueryItem Expressions 5-9

Extension Functions as QueryItem Expressions
FracOTot Calculates the fraction of a value compared to the sum for the
entire row. This fraction can be multiplied by any factor, as
specified in the second argument.

MyQuery.QueryItems.Add “FracOTot (Units Sold, 100)”

FracPTot Calculates the fraction of a value compared to the sum for the
entire page. This fraction can be multiplied by any factor, as
specified in the second argument.

MyQuery.QueryItems.Add “FracPTot (Units Sold, 100)”

FracSTot Calculates the fraction of a value compared to the sum of the
subtotal for that value. Arguments: the measure, the multi-
plier, and the attribute on which subtotals are being
performed.

MyQuery.QueryItems.Add _
 “FracSTot (Units Sold, 100, Brand)”

FracTot Calculates the fraction of a value compared to the total for a
column. This fraction can be multiplied by any factor, as
specified in the second argument.

MyQuery.QueryItems.Add “FracTot (Units Sold, 100)”

MovingAvg Calculates the average of a value and a specified number of
values in preceding rows of the same column. Arguments:
measure name and number of values over which to average.

MyQuery.QueryItems.Add “MovingAvg(Units Sold, 2)”

MovingSum Calculates the sum of a value and a specified number of values
in preceding rows of the same column Arguments: measure
name and number of preceding values to sum.

MyQuery.QueryItems.Add “MovingSum (Units Sold, 2)”

PCT_CHANGE Calculates the percent change between columns of data.

MyQuery.QueryItems.Add “PCT_CHANGE (Units Sold)”

PCT_PREV Calculates a value as a percentage of the value in the preceding
column of data.

MyQuery.QueryItems.Add “PCT_PREV (Units Sold)”

Table 5-2 Functions as QueryItem Expressions (continued)

Function Description/Example
5-10 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
The Absolute Change Function

This function compares two or more columns or rows of the same measure,
interpolating an additional measure indicating the difference between the
two. The AbsoluteChange function only compares columns or rows of data
measured in the same units, ignoring intervening columns or rows measured
in different units.

QUANTILE For each column, divides values of a column into a specified
number of ranked categories according to their magnitude.
Arguments: measure name and number of quantiles or
categories.

MyQuery.QueryItems.Add “QUANTILE (Units Sold, 3)”

RUNNINGSUM Calculates the sum of a value and all values in preceding rows
of the same column.

MyQuery.QueryItems.Add “RUNNINGSUM (Units Sold)”

TOPN Limits the rows displayed to those associated with the highest
or lowest values of a measure. The number of rows in the
report is set as an absolute numeric argument. Arguments:
measure name, number of rows to display, column number,
and ascending/descending flag.

MyQuery.QueryItems.Add “TOPN (Units Sold, 3, 0, Asc)”

TOPPCT Limits the rows displayed to those associated with the highest
or lowest values of a measure. This function only displays
those rows storing values that are within a specified
percentage of the highest value in a row or column.
Arguments: measure name, percentage, column number, and
ascending/descending flag.

MyQuery.QueryItems.Add “TOPN(Units Sold, 34, 0, Asc)”

Table 5-2 Functions as QueryItem Expressions (continued)

Function Description/Example
Extension Functions as QueryItem Expressions 5-11

Extension Functions as QueryItem Expressions
If a query’s measures are organized by columns, this function compares
numeric data as organized by columns and thus depends on the orientation
of at least one attribute by columns. A minimum of two columns of data must
be retrieved for the comparison to function. Conversely, if the orientation of
measures is by rows, an attribute with at least two values must be also be
organized by rows. The only argument for this function is the name of the
measure on which it is being performed:

MyQuery.QueryItems.Add “ABS_CHANGE (MEASURE NAME)”

Please note that this function can be performed on measures otherwise
excluded from the query and its resulting report. In such cases, MetaCube
retrieves numeric values for the measure on which the function is being
performed but only displays the result of the function. For your reference,
MetaCube API Exercise 15 develops a simple query using the Main
MetaCube Extension’s absolute change function.
5-12 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
MetaCube API Exercise 15: The Absolute Change Function
1 Sub Absolute_Change()

2 'Declare Variables
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyMetacube As Object, MyData As Variant

5 'Declare Constants
6 Const FirstAttribute = "Brand"
7 Const FirstPivot = 1 'By Rows
8 Const SecondAttribute = "Region"
9 Const SecondPivot = 2 'By Columns

10 Const Expression = "ABS_CHANGE (Units Sold)"
11 Const MeasurePivot = 2 'By Columns

12 'Connect
13 Set MyMetabase = CreateObject("Metabase")
14 MyMetabase.Extensions.Add _
15 "c:\metacube\mcplgmn.mcx"
16 MyMetabase.Connect

17 'Define Query
18 Set MyQuery = MyMetabase.Queries.Add _
19 ("My New Query")

20 'QueryCategories
21 MyQuery.QueryCategories.Add FirstAttribute
22 MyQuery.QueryCategories.Add SecondAttribute

23 'QueryItems
24 MyQuery.QueryItems.Add "Units Sold"
25 MyQuery.QueryItems.Add Expression

26 'Pivoting
27 MyQuery.QueryCategories.Item(0).Orientation = _
28 FirstPivot
29 MyQuery.QueryCategories.Item(1).Orientation = _
30 SecondPivot
31 MyQuery.ItemOrientation = MeasurePivot

32 'Get Results
33 Worksheets.Item("Query Report").Activate
34 Cells.Select
35 Selection.ClearContents
36 Set MyMetacube = MyQuery.MetaCubes.Add("Data")
37 Let MyData = MyMetacube.ToVBArray
38 Set ReportRange = ActiveSheet.Range _
39 (ActiveSheet.Cells(1, 1), _
40 ActiveSheet.Cells _
41 (MyMetacube.Rows, MyMetacube.Columns))
Extension Functions as QueryItem Expressions 5-13

Extension Functions as QueryItem Expressions
42 Let ReportRange.Value = MyData
43 ReportRange.EntireColumn.AutoFit 'Sizes columns

44 End Sub

Executing this procedure generates the report displayed in Table 5-3.

Fraction of Grand Total

For each numeric value of a specified measure within a report, this function
calculates the fraction of that value compared to the sum of that measure or
expression for all cells, in columns, rows, and pages of the report, multiplying
the fraction by a numeric factor specified as an argument to the function.

To see fractional values as a percentage, choose a factor of one hundred. You
must also specify the name of the measure or expression on which the calcu-
lation is being performed:

MyQuery.QueryItems.Add”FracGTot(MEASURE NAME, MULTIPLIER)”

Please note that, as with ABS_CHANGE, this function can be performed on
measures not otherwise included in the query. In such cases, the data
retrieved to perform the calculation is not displayed in the report.

Table 5-3 Result of MetaCube API Exercise 15: Brand by Rows,
Region by Columns, Measures by Columns

Region Northeast West West

Brand Units Sold Units Sold ABS_CHANGE
(Units Sold)

Alden 1811 2626 815

Barton 1314 1924 610

Delmore 1778 2557 779

Extreme 433 649 216

Lasertech 1105 1665 560

NVD 2719 3788 1069

Onetron 910 1254 344

Suresound 2548 3464 916

Techno 3699 5286 1587
5-14 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
By substituting different constant values in MetaCube API Exercise 15, we
can easily develop an application incorporating this function:

Declare Constants

 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "FracGTot (Units Sold, 100)"
 Const MeasurePivot = 2 'By Columns

Substituting this code in lines 6 through 11 of MetaCube API Exercise 15 and
executing the altered application generates the report displayed in Table 5-4.
The values in the FracGTot cells in all rows of both columns sum to one,
multiplied by a hundred, the factor specified as the second argument in the
FracGTot function.

Table 5-4 Fraction of Grand Total for a Brand-Region Query

Region Northeast Northeast West West

Brand Units Sold FracGTot
(Units Sold, 100)

Units Sold FracGTot
(Units Sold, 100)

Alden 1811 4.581330635 2626 6.643055907

Barton 1314 3.324057678 1924 4.867189476

Delmore 1778 4.497849734 2557 6.468504933

Extreme 433 1.095370605 649 1.641791045

Lasertech 1105 2.795345307 1665 4.211990893

NVD 2719 6.878320263 3788 9.582595497

Onetron 910 2.302049077 1254 3.172274222

Suresound 2548 6.445737415 3464 8.762964837

Techno 3699 9.357450038 5286 13.37212244
Extension Functions as QueryItem Expressions 5-15

Extension Functions as QueryItem Expressions
Fraction of Orthogonal Total

For each numeric value of a specified measure or expression within a report,
this function calculates the fraction of that value compared to all values of
that measure or expression within the same row. When measures are
organized by column, this function depends on the orientation of at least one
attribute by columns; a minimum of two columns of data must be retrieved
for the comparison to function. The FracOTot function requires two
arguments, the name of the measure or the expression, and the factor by
which to multiply the fraction. As before, you need not include in the query
the measure on which the function is being performed.

MyQuery.QueryItems.Add “FracOTot(MEASURE NAME, MULTIPLIER)”

Please note that pivoting measures to the row orientation directs the FracOTot
function to calculate the fraction of each measure’s value compared to all
values of that measure within the same column. As this function’s full
namefraction orthogonal to totalimplies, this function always derives
fractions from the sum of values appearing orthogonal to its own orientation
as a measure.

By substituting different constant values in MetaCube API Exercise 15, we
can easily develop an application incorporating the FracOTot function:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "FracOTot (Units Sold, 100)"
 Const MeasurePivot = 2 'By Columns
5-16 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
The report generated by the altered application is displayed in Table 5-5. In
this report, the sum of the FracOTot values in each row total one, multiplied
by one hundred, the factor specified as the second argument in the function.
The fraction calculated is thus the fraction of the total for each row, even
though measures have been organized by column.

Fraction of Page Total

This function performs the same calculation as the FracGTot function but
compares a single value of a measure or an expression to the total of that
measure or expression for an entire page, rather than the entire query result.
If you have not subdivided a query result into different pages, the FracPTot
function will return the same values as the FracGTot function. As with
previous functions, you must specify the measure or expression for which
you are calculating the fraction and the factor by which that fraction should
be multiplied.

MyQuery.QueryItems.Add “FracPTot(MEASURE, MULTIPLIER)”

Since Excel cannot display more than a page of results, this function cannot
be meaningfully incorporated into a Visual Basic for Applications procedure.

Table 5-5 Fraction of Orthogonal Total for a Brand-Region Query

Region Northeast Northeast West West

Brand Units Sold FracOTot
(Units Sold, 100)

Units Sold FracOTot
(Units Sold, 100)

Alden 1811 40.81586658 2626 59.18413342

Barton 1314 40.58060531 1924 59.41939469

Delmore 1778 41.01499423 2557 58.98500577

Extreme 433 40.01848429 649 59.98151571

Lasertech 1105 39.89169675 1665 60.10830325

Suresound 2548 42.38190286 3464 57.61809714

Techno 3699 41.16861436 5286 58.83138564
Extension Functions as QueryItem Expressions 5-17

Extension Functions as QueryItem Expressions
Fraction of Subtotal

This function calculates each value of a specified measure or expression as a
fraction of a subtotal for that measure or expression. When measures are
organized by columns, a subtotal sums numeric values for a group of rows.

For example, if we subdivide an attribute such as Brand by Region, we can
then sum each brand’s total sales for all regions. Instantiating a Summary
object, as explained in “The Summary Class of Objects” on page 8-69, inter-
polates subtotals for each brand.

Within a subtotal, the Fraction of Subtotal function calculates each value as a
fraction of that subtotal; if Brand sales are subdivided by Region, this function
calculates regional brand sales as a fraction of the total sales for that brand.
We need not include raw sales data or the subtotals of sales to calculate the
fractional subtotal for sales.

The function does, however, require that the query organize multiple
attributes by rows so that there are clear subdivisions by which to calculate
the subtotal and fractional subtotal. Moreover, the Fraction of Subtotal
function requires three arguments: the name of the measure or expression on
which to base the calculation, the factor by which to multiply the fraction,
and the name of the attribute that constitutes the broader grouping in the
report.

MyQuery.QueryItems.Add “FracSTot(MEASURE NAME, MULTIPLIER,
NAME OF THE SUBDIVIDED ATTRIBUTE)”

Please note that pivoting measures to the row orientation directs this function
to calculate subtotals on the basis of attributes organized as columns and
subcolumns.
5-18 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
With measures in their standard columnar orientation, the Fraction of
Subtotal function bases its calculation on fractions of the sums of values
within a row, at break points defined by the attribute instantiated first. The
constant values substituted in MetaCube API Exercise 15 thus organize both
attributes by row, leaving measures in the column orientation:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 1 'By Rows, i.e. subrows

 Const Expression = _
 "FracSTot (Units Sold, 100, Brand)"
 Const MeasurePivot = 2 'By Columns

Executing the altered procedure generates a report similar to the one shown
in Table 5-6. To illustrate the premise of the Fraction of Subtotal function, the
code has further been altered to include the actual subtotal, although such a
modification is unnecessary for the function to calculate fractional values and
need not be included in your own programs. To learn how to include
subtotals in a report, see “The Summary Class of Objects” on page 8-69.
Extension Functions as QueryItem Expressions 5-19

Extension Functions as QueryItem Expressions
In Table 5-6, the two regional values of Northeast and West subdivide eight
brands, with the Fraction of Subtotal function calculating the fraction each
region contributes to the brand’s total sales for both regions. For the subtotals
interpolated at each break point, the Fraction of Subtotal function always
returns a value of 100.

Table 5-6 Fraction of Subtotal for a Brand-Region Query

Brand Region Units Sold
FracSTot

(Units Sold, 100, Brand)

Alden Northeast 1811 40.81586658

Alden West 2626 59.18413342

Alden Total 4437 100

Barton Northeast 1314 40.58060531

Barton West 1924 59.41939469

Barton Total 3238 100

Delmore Northeast 1778 41.01499423

Delmore West 2557 58.98500577

Delmore Total 4335 100

Extreme Northeast 433 40.01848429

Extreme West 649 59.98151571

Extreme Total 1082 100

Suresound Northeast 2548 42.38190286

Suresound West 3464 57.61809714

Suresound Total 6012 100

Techno Northeast 3699 41.16861436

Techno West 5286 58.83138564

Techno Total 8985 100
5-20 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Fraction of Total

This function calculates the value of a measure or expression as a fraction of
the total values in a column or row, multiplying that fraction by a factor such
as one hundred to return a percentage. With measures in their default orien-
tation as columns, this function operates on measures as they would appear
in a column, comparing one value to its total for the column. When measures
have been pivoted to rows, the function compares a value to its total for the
row in which it would appear. As always, the measure on which the function
is being performed need not be included in the query definition. The function
requires the same arguments as the FracOTot and FracGTot functions,
explained above:

MyQuery.QueryItems.Add “FracTot(MEASURE, MULTIPLIER)”

Please note that this function and the FracOTot function can be thought of as
operating at right angles to one another, such that pivoting measures will
cause the FracTot function to return the same values as calculated by the
FracOTot function for the original query.

We can illustrate this point by substituting the same measures, attributes, and
attribute orientations in procedures featuring FracOTot and FracTot expres-
sions, with the only difference lying in the orientation of measures:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "FracTot (Units Sold, 100)"
 Const MeasurePivot = 1 'By Rows

Substituting the lines above for similar lines in MetaCube API Exercise 15
generates the report displayed in Table 5-7 on page 5-22. Comparing this
result to Table 5-5 on page 5-17 confirms that the two functions return the
same values when pivoted to opposite orientations.
Extension Functions as QueryItem Expressions 5-21

Extension Functions as QueryItem Expressions
Table 5-7 Fraction of Total For a Brand-Region Query, With Measures
Pivoted to the Row Orientation

Brand Region Northeast West

Alden Units Sold 1811 2626

Alden FracTot
(Units Sold, 100)

40.81586658 59.18413342

Barton Units Sold 1314 1924

Barton FracTot
(Units Sold, 100)

40.58060531 59.41939469

Delmore Units Sold 1778 2557

Delmore FracTot
(Units Sold, 100)

41.01499423 58.98500577

Extreme Units Sold 433 649

Extreme FracTot
(Units Sold, 100)

40.01848429 59.98151571

Lasertech Units Sold 1105 1665

Lasertech FracTot
(Units Sold, 100)

39.89169675 60.10830325

NVD Units Sold 2719 3788

NVD FracTot
(Units Sold, 100)

41.78576917 58.21423083

Onetron Units Sold 910 1254

Onetron FracTot
(Units Sold, 100)

42.05175601 57.94824399

Suresound Units Sold 2548 3464

Suresound FracTot
(Units Sold, 100)

42.38190286 57.61809714

Techno Units Sold 3699 5286

Techno FracTot
(Units Sold, 100)

41.16861436 58.83138564
5-22 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Moving Average

This function averages a measure or expression with preceding values of that
measure or expression. If measures are organized by columns, the preceding
values of that measure or expression are taken from higher cells of the same
column; if measures are organized by rows, the preceding values are taken
from cells to the left in the same row. For the initial cell on which an average
is to be calculated, there are no preceding cells, so the moving average will
simply be the value of that cell for the specified measure. Along with the
name of the measure or expression being averaged, the number of preceding
values over which to calculate the average is specified as an argument to the
function. As always, the measure on which the function is being performed
need not itself be included in the query.

MyQuery.QueryItems.Add “MovingAvg (MEASURE, # OF VALUES)

To demonstrate this function, we can substitute the following constant decla-
rations into MetaCube API Exercise 15, with the Moving Average function as
the expression:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Fiscal Week"
 Const SecondPivot = 2 'By Columns

 Const Expression = "MovingAvg (Units Sold, 3)"
 Const MeasurePivot = 1 'By Row
Extension Functions as QueryItem Expressions 5-23

Extension Functions as QueryItem Expressions
Because moving averages are often calculated as a measure changes over
time, the Fiscal Week attribute replaces the Brand attribute in this query and in
the query for the Moving Sum function. Table 5-8 displays the data returned
by the modified procedure, including only four of the 26 weeks displayed in
the complete report.

Since this query organizes measures by rows, the Moving Average function
incorporates preceding values from the same row to calculate the average.
For example, to calculate the average brand sales of Extreme over three weeks
for the week of January 15 - 21, the function averages sales for the week of
January 1, the week of January 8, and, of course, the week of January 15.
These values appear in italics.

Table 5-8 Moving Average Function for a Brand-Fiscal Week Query (Four Weeks Only)

Brand Fiscal Week
94/01/01 -
94/01/07

94/01/08 -
94/01/14

94/01/15 -
94/01/21

94/01/22 -
94/01/28

Alden Units Sold 161 141 135 147

Alden MovingAvg
(Units Sold, 3)

161 151 145.6666 141

Barton Units Sold 115 118 96 96

Barton MovingAvg
(Units Sold, 3)

115 116.5 109.6666 103.3333

Delmore Units Sold 186 162 161 135

Delmore MovingAvg
(Units Sold, 3)

186 174 169.6666 152.6666

Extreme Units Sold 46 34 27 40

Extreme MovingAvg
(Units Sold, 3)

46 40 35.66666 33.66666

Lasertech Units Sold 108 93 83 93

Lasertech MovingAvg
(Units Sold, 3)

108 100.5 94.66666 89.66666

Techno Units Sold 360 320 294 268

Techno MovingAvg
(Units Sold, 3)

360 340 324.6666 294
5-24 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Similarly, to calculate the average weekly sales over a three week period
ending the week of January 22 - 28, the function averages sales for the week
of January 8, the week of January 15, and the week of January 22. These
values appear in bold font. As the function iterates through the weeks, the
same value may be included in several averages, which explains why sales
for several weeks are displayed in both italics and bold font.

Please note that for the first two weeks of data, the function cannot evaluate
the average over three weeks, so it calculates the average for as many weeks
as are available.

Moving Sum

This function sums a measure or expression with the preceding values of that
measure or expression. The number of preceding values included in the sum
is specified as an argument to the function. For each cell in a report for which
the moving sum is to be calculated, the preceding values are taken to be the
values for the measure or expression that would appear in higher cells of the
same column. If measures have been pivoted to a row orientation, the
preceding values are taken to be the values for the measure or expression that
would appear in the same row and to the left. As always, the measure on
which the function is being performed need not be included in the query.

MyQuery.QueryItems.Add “MovingSum (MEASURE, # OF VALUES)”

Substituting constant expressions in MetaCube API Exercise 15 generates the
report displayed in Table 5-9 on page 5-26:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Fiscal Week"
 Const SecondPivot = 2 'By Columns

 Const Expression = "MovingSum (Units Sold, 3)"
 Const MeasurePivot = 1 'By Rows
Extension Functions as QueryItem Expressions 5-25

Extension Functions as QueryItem Expressions
As before, the Fiscal Week attribute has been substituted for Region, as moving
sums are often calculated over time. Since time periods often appear as
different columns in a report, attributes and measures have been pivoted
such that the moving sum function sums values appearing in the same row,
but preceding columns. Only four of the twenty-six weeks appearing in the
complete report are included in Table 5-9.

Table 5-9 Moving Sum Function in a Brand-Fiscal Week Query (Four Weeks Only)

Brand Fiscal Week
94/01/01 -
94/01/07

94/01/08 -
94/01/14

94/01/15 -
94/01/21

94/01/22 -
94/01/28

Alden Units Sold 161 141 135 147

Alden MovingSum
(Units Sold, 3)

161 302 437 423

Barton Units Sold 115 118 96 96

Barton MovingSum
(Units Sold, 3)

115 233 329 310

Delmore Units Sold 186 162 161 135

Delmore MovingSum
(Units Sold, 3)

186 348 509 458

Extreme Units Sold 46 34 27 40

Extreme MovingSum
(Units Sold, 3)

46 80 107 101

Lasertech Units Sold 108 93 83 93

Lasertech MovingSum
(Units Sold, 3)

108 201 284 269

NVD Units Sold 259 239 214 190

NVD MovingSum
(Units Sold, 3)

259 498 712 643

Techno Units Sold 360 320 294 268

Techno MovingSum
(Units Sold, 3)

360 680 974 882
5-26 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
In this example, the Moving Sum function calculates at weekly intervals the
sum of the past three weeks’ sales. If, instead of the Fiscal Week attribute, the
Region attribute had been organized by columns, the function would have
returned for each region the sum of that and the two preceding region’s sales.
The order in which regions are sorted determines the values returned by the
function.

In cells for which the specified number of preceding values are not available,
the Moving Sum function returns a partial sum. Indeed, for the first cell in
each row, the function sums one value, returning unchanged the value of the
measure on which the function operates.

Focusing as before on the Extreme brand in the third week of the report,
January 15-21, we see that the function sums sales for that week and the two
preceding weeks. In the fourth week, the function reaches the maximum
number of values allowed by the second argument of the expression, three,
and excludes the first week’s sales from the sum to include the fourth week’s
sales. Values that are included in the third week’s moving sum are italicized,
and values included in the fourth week’s moving appear in bold font.

Percent Change

This function calculates the percent change between two values of a measure
or an expression, comparing every two values that appear in each row of a
report according to the formula:

((Second Value/First Value) - 1) *100

Taking the first of two measure values as 100 percent, the function evaluates
whether the second measure value is greater or smaller than the first and by
what percentage.

Because the function compares columns of data, it returns no values for the
first column of data as the function cannot compare that column to any
preceding columns.

If measures have been pivoted to the row orientation, this function calculates
the percentage change between each pair of cells within the same column of
a report, returning its first result for the second rather than the first row of
data.
Extension Functions as QueryItem Expressions 5-27

Extension Functions as QueryItem Expressions
The Percent Change function requires no arguments except the name of the
measure on which the function operates.

MyQuery.QueryItems.Add “PCT_CHANGE (MEASURE)”

Substituting new constant values at the indicated line numbers in MetaCube
API Exercise 15 enables us to quickly develop an application demonstrating
this function:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "PCT_CHANGE (Units Sold)"
 Const MeasurePivot = 2 'By Columns

Executing the modified procedure returns the report displayed in Table 5-10.

Table 5-10 Percentage Change Function for a Brand-Region Query

Region Northeast West West

Region Northeast West West

Brand Units Sold Units Sold Pct_Change
(Units Sold)

Alden 1811 2626 45.00276091

Barton 1314 1924 46.42313546

Delmore 1778 2557 43.81327334

Extreme 433 649 49.88452656

Lasertech 1105 1665 50.67873303

NVD 2719 3788 39.31592497

Onetron 910 1254 37.8021978

Suresound 2548 3464 35.94976452

Techno 3699 5286 42.90348743
5-28 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
That all the values returned by the function are positive indicates that sales
for the West region are uniformly better than for the Northeast region. Taking
the Extreme brand as an example of this trend, we can see that the values
returned by the Percentage Change function indicate that the West’s sales for
that brand are nearly fifty percent greater than the Northeast’s sales for that
brand.

Please note that reversing the sort of the report so that West appeared first
and Northeast second would change the values returned by the function. In
fact, all values returned by the function would be negative, as the column
associated with larger values would appear first.

Percent of Previous

This function calculates a value of a measure or an expression as a percentage
of the previous value in the same row according to the formula:

(Second Value/First Value) *100

Please note that the formula of this function differs only slightly from the
formula of the Percent Change function. Both functions calculate the fraction
of one value as compared to a previous value but the Percent Change formula
subtracts one from the fraction before converting to a percentage. When
comparing two values, the Percent Change function returns a change, for
example, of negative twenty percent, whereas the Percent of Previous
function in this example returns a percentage, 80, indicating that the second
value is 80 percent of the first.

Like the Percent Change function, the Percent of Previous function compares
by default each column of data to its predecessor, returning no values for the
first column of data. Pivoting measures prompts this function to compare
values across rows rather than columns. The Percent of Previous function
requires one argument, the name of the measure or expression on which the
function is being performed:

MyQuery.QueryItems.Add “PCT_PREV (MEASURE)”
Extension Functions as QueryItem Expressions 5-29

Extension Functions as QueryItem Expressions
Substituting new constant expressions in MetaCube API Exercise 15 enables
us to rapidly incorporate this new function in a procedure:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "PCT_PREV(Units Sold)"
 Const MeasurePivot = 2 'By Columns

Executing the procedure generates the report displayed in Table 5-11.
Comparing the values returned by the Percent Change and Percent of
Previous functions in Table 5-10 and Table 5-11 confirms that the difference
between the results of the two functions is always one hundred.

Table 5-11 Percentage of Previous for a Brand-Region Query

Region Northeast West West

Brand Units Sold Units Sold PCT_PREV
(Units Sold)

Alden 1811 2626 145.0027609

Barton 1314 1924 146.4231355

Delmore 1778 2557 143.8132733

Extreme 433 649 149.8845266

Lasertech 1105 1665 150.678733

NVD 2719 3788 139.315925

Onetron 910 1254 137.8021978

Suresound 2548 3464 135.9497645

Techno 3699 5286 142.9034874
5-30 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Quantiles

Where the value of a measure or an expression would normally appear in a
report, this function assigns a categorical ranking on the basis of that value,
indicating the quantile to which that value belongs compared to other values
in the same column. If, for example, you were to rank the sales of nine brands
into three quantiles (tertiles, to be precise), the brands would be divided into
three categories on the basis of their sales, with the top three selling brands
assigned a value of one, the next three a value of two, and the last three a
value of three.

The function requires you to specify as arguments the measure or expression
on which the calculation will be based, and the number of quantiles by which
to categorize the values of that measure.

MyQuery.QueryItems.Add “QUANTILE (MEASURE, # OF CATEGORIES)”

Pivoting measures to a row orientation directs this function to compare the
values of a measure or an expression to other values appearing in the same
row rather than in the same column.

Substituting new constant expressions in MetaCube API Exercise 15 enables
us to incorporate this function as an expression in the standard query on
sales, by Brand and by Region.

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = "QUANTILE (Units Sold, 3)"
 Const MeasurePivot = 2 'By Columns

Executing the modified procedure creates the report displayed in Table 5-12
on page 5-32. In that report, sales of nine brands are evenly divided into three
ranked groups. If row values cannot be evenly divided between the specified
number of categorical rankings, the function will assign lower rather than
higher rankings, as necessary.
Extension Functions as QueryItem Expressions 5-31

Extension Functions as QueryItem Expressions
Running Sums

This function sums the value of a measure or an expression with all
preceding values that would appear in the same column. Unlike the Moving
Sum function, which limits the number of preceding values such that one
value is subtracted from the sum as another is added, the Running Sum
function continuously increments the value returned by the function from
the top of the report to the bottom until the last value represents the grand
total for that column. The only argument required by this function is the
name of the measure on which the function is being calculated:

MyQuery.QueryItems.Add “RUNNINGSUM (MEASURE)”

Table 5-12 Quantile Function for a Brand-Region Query

Region Northeast Northeast West West

Brand Units Sold QUANTILE
(Units Sold, 3)

Units
Sold

QUANTILE
(Units Sold, 3)

Alden 1811 2 2626 2

Barton 1314 2 1924 2

Delmore 1778 2 2557 2

Extreme 433 3 649 3

Lasertech 1105 3 1665 3

NVD 2719 1 3788 1

Onetron 910 3 1254 3

Suresound 2548 1 3464 1

Techno 3699 1 5286 1
5-32 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Please note that pivoting measures to the row orientation directs this function
to increment values along a row rather than down a column. Substituting
new constant values in MetaCube API Exercise 15 and executing the
modified procedure demonstrates this effect:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "4 Week Period"
 Const SecondPivot = 2 'By Columns

 Const Expression = "RunningSum (Units Sold)"
 Const MeasurePivot = 1 'By Rows

As with moving averages and moving sums, running sums are often calcu-
lated over time, and so we replace the Region attribute with an attribute from
the time dimension, 4 Week Period, and pivot measures such that the function
increments values along a row rather than down a column.

The resulting report is displayed in Table 5-13 on page 5-34. That report adds
the number of units sold for any brand to corroborate the idea that the value
returned by the Running Sum function increases from one four-week period
to the next by the volume of sales for each period, giving the total sales to date
for that brand at four-week intervals.
Extension Functions as QueryItem Expressions 5-33

Extension Functions as QueryItem Expressions
Top N

This function evaluates the values of a measure or an expression for a
specified column, limiting the rows displayed in the entire report to those
with the highest or lowest values for that column. For example, this function
could limit a query returning brand sales data to three rows, which represent
the top three selling brands. The values returned by the function for those
brands would simply be sales data.

Since reports often feature multiple columns of data, you must specify the
column on which the function should base its selection of the top or bottom
rows. If we subdivide brand sales into two columns by region, Northeast and
West, the function can limit the query to the top three selling brands in the
Northeast region or the top three selling brands in the West region.

Table 5-13 Running Sum for a Brand-Region Query

Brand 4-Week Period
94/01/01 to
94/01/28

94/01/29 to
94/02/25

94/02/26 to
94/03/25

94/03/26 to
94/04/22

Alden Units Sold 584 616 748 219

Alden RunningSum
(Units Sold)

584 1200 1948 2167

Barton Units Sold 425 418 579 159

Barton RunningSum
(Units Sold)

425 843 1422 1581

Delmore Units Sold 644 520 762 161

Delmore RunningSum
(Units Sold)

644 1164 1926 2087

Extreme Units Sold 147 138 195 55

Extreme RunningSum
(Units Sold)

147 285 480 535

Techno Units Sold 1242 1126 1614 347

Techno RunningSum
(Units Sold)

1242 2368 3982 4329
5-34 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
Due to this potential ambiguity, the Top N function requires four arguments:
the name of the measure or expression to be evaluated for high or low values,
the number of rows to include in the report, the column on which to base the
function, and a flag, Asc or Desc, indicating whether to take the highest or
lowest values. Setting the Desc argument directs the function to choose the
lowest rather than the highest values. Asc and Desc are not constant names
substituting for a numeric flag but strings understood directly as arguments
by the function. The syntax for including this function as an expression when
instantiating a QueryItem is:

MyQuery.QueryItems.Add _
“TOPN (MEASURE, # OF ROWS, COLUMN/ROW INSTANCE, _

Asc/Desc FLAG)”

The Column/Row Instance argument identifies the column on which to base
the selection of the top or bottom rows by number. Columns are numbered in
a report from left to right, beginning with zero, ignoring subdivisions created
for different measures. If no attributes have been pivoted to the column
orientation, the value for this argument should be zero.

As we subdivide columns by different attribute values, it becomes more
difficult to define the basis for choosing the top or bottom rows of data.

Consider the report displayed in Table 5-14. The top brands can be identified
on the basis of numeric data for the Northeast or West region, for either 1995
or 1994. For each column, the two highest values are set in bold face. A Top
N function that returns revenues for the top two revenue-grossing brands
would display different brands, depending on the column specified by the
column/row number argument: Alden and Barton were the top-grossing
brands in the Northeast region for 1994; but in 1995, Alden and Lasertech
were the top grossing brands.

We cannot, however, identify the critical column by the name of a single
attribute value, such as Northeast, because multiple attributes may
subdivide columns. In this example, we must specify whether the function
should return the highest values for the Northeast in 1994 or the highest
values for the Northeast region in 1995. And while this query subdivides
columns by two attributes, a different query may subdivide columns by
three, four, or more attributes.

It is for this reason that we must identify columns by the more flexible
convention of index number.
Extension Functions as QueryItem Expressions 5-35

Extension Functions as QueryItem Expressions
Since the measure on which to base the Top N function is already explicitly
specified as an argument, subdivisions created for different measures do not
increment the column/row instance. The column/row instance only incre-
ments when a new combination of attribute values groups data by columns.
In Table 5-14, each such combination is shaded differently. A row at the head
of the report identifies the column number.

Since the column/row number depends on the order in which different
columns appear, reversing the sort on any attribute with the same orientation
as measures changes the basis for defining the top or bottom rows. Please
also note that pivoting the orientation of measures to rows directs the
function to limit the query result to a certain number of columns, based on
the values appearing in the row specified by the column/row number. The
column/row number increments in the same way, beginning with the top-
most row and going down.

Table 5-14 Report Subdivided by Different Attribute Values, Measures,
With Highest Two Values in Bold for Each Column

Column #: 0 1 2 3

Region Northeast West

Fiscal Year 1994 1995 1994 1995

Brand Units
Sold

Gross
Revenue

Units
Sold

Gross
Revenue

Units
Sold

Gross
Revenue

Unit
Sold

Gross
Revenue

Alden 899 3062700 912 3014520 1268 4268520 1358 4494860

Barton 638 688660 676 717500 943 1033420 981 1050360

Delmore 861 191750 917 205850 1226 278400 1331 299600

Extreme 212 371000 221 386750 323 565250 326 570500

Lasertech 519 361700 586 901800 814 581100 851 588750

NVD 1349 218980 1310 220940 1796 287530 1992 320025

Onetron 442 68525 468 74950 2600 99975 654 108750

Suresound 1230 297540 1318 325600 1693 399210 1771 420090

Techno 1817 104024 1882 108175 251 145285 2774 158247
5-36 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
To deploy this function in a procedure, substitute new constants in MetaCube
API Exercise 15:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = _
"TOPN (Units Sold, 2, 0, Asc)"
 Const MeasurePivot = 2 'By Columns

Executing the modified procedure generates the report displayed as Table
5-15. As the first value of an attribute organized by columns, Northeast
occupies the position of the zeroth column, which the column/row number
argument specifies as the basis for calculating the top-selling brands.

After the Top N function evaluates the values of the specified measure, the
top or bottom rows are identified and selected, and the function returns the
measure values for those rows unchanged. Separately including the measure
on which the Top N function is based results in the redundancy seen in Table
5-15.

Table 5-15 Top-Two Selling Brands for the Northeast Region

Region Northeast West

Brand Units
Sold

TOPN
(Units Sold, 2, 0, Asc)

Units
Sold

TOPN
(Units Sold, 2, 0, Asc)

NVD 2719 2719 3788 3788

Techno 3699 3699 5286 5286
Extension Functions as QueryItem Expressions 5-37

Extension Functions as QueryItem Expressions
Top Percentage

This function is identical to the Top N function, but differs in the second
argument. The second argument represents the percent by which displayed
rows can be less than the highest value. For example, if this function were
performed on a column for which the top value was 100, any rows for which
the value of that column were 90 or higher would be returned by a TOPPCT
function set to 10 percent. This would be true even if the value of all rows for
that column were between 90 and 100, in which case the TOPPCT would
essentially have no effect. The second argument is thus a number between
one and 100 representing a percentage rather than an absolute number.

To deploy this function in a procedure, substitute new constants in MetaCube
API Exercise 15:

'Declare Constants
 Const FirstAttribute = "Brand"
 Const FirstPivot = 1 'By Rows

 Const SecondAttribute = "Region"
 Const SecondPivot = 2 'By Columns

 Const Expression = _
"TOPPCT (Units Sold, 50, 0, Asc)"

 Const MeasurePivot = 2 'By Columns

Executing this query returns only three rows. The top-selling brand for the
specified column "Northeast" is "Techno Components," with sales of 3699.
Only two other brands enjoyed sales in the Northeast within fifty percent of
3699 units. Both are included in the report shown in Table 5-16.

Please note that this function does not limit the number of rows appearing in
the report to fifty percent of all rows, in which case the report would have
included four or even five rows.

Table 5-16 Brands Within Fifty Percent of the Top-Selling Brand in the Northeast Region

Region Northeast West

Brand Units
Sold

TOPPCT
(Units Sold, 50, 0, Asc)

Units
Sold

TOPPCT
(Units Sold, 50, 0, Asc)

NVD 2719 2719 3788 3788

Suresound 2548 2548 3464 3464

Techno 3699 3699 5286 5286
5-38 MetaCube Application Programmer’s Manual

Extension Functions as QueryItem Expressions
The general syntax for this function is:

MyQueryQueryItems.Add “TOPPCT (MEASURE,
% OF ROWS TO DISPLAY, COLUMN/ROW INSTANCE, Asc/Desc FLAG)”

Nesting QueryItem Expressions

Any function that performs a calculation on the numeric data represented by
a measure can also perform that calculation on the data returned by another
function. All of the measure functions in the Main MetaCube Extension can
thus be nested one within another. For example, a query requesting the three
brands that have experienced the most dramatic change in sales from one
period to the next nests the Absolute Change function within the Top N
function:

MyQuery.QueryItems.Add _
“TOPN (ABS_CHANGE (Units Sold), 3, 0, Asc)”

In this example, MetaCube performs a recursive analysis. For every two
columns of raw data, MetaCube first calculates the difference between the
two, interpolating a column displaying the result. MetaCube then identifies
the brands for which the first, or zeroth, column of absolute change values are
largest, only displaying absolute change values for those brands.
Extension Functions as QueryItem Expressions 5-39

Extension Functions as QueryCategory Expressions
Extension Functions as QueryCategory Expressions
The Bucket and Compare functions embed query capabilities in MetaCube’s
analysis engine. The Compare function in particular expands the definition
of a QueryCategory to include heterogeneous information, requiring
MetaCube to issue multiple queries to the relational database, and subse-
quently to consolidate the result in a single report.

The syntax for each function is explained below. As always, if the instance of
the QueryCategory is stored in an object variable, the entire expression must
be enclosed in parentheses, as explained in “Declaring MetaCube Object
Type Variables” on page 1-14.

Bucket

The Bucket function groups selected values of a single attribute under
customized headings, creating a QueryCategory based on that attribute but
with entirely different, user-defined groupings. Each grouping is referred to
as a bucket. For example, for the Brand attribute this function could create a
bucket named “My Brands,” consisting of the “Alden” and ‘Delmore”
brands, and another bucket named “Other Brands,” consisting of the
remaining six brands. The syntax for this function is embedded as an
expression when instantiating a QueryCategory:

MyQuery.QueryCategories.Add “BUCKET (Brand, [My Brands, list
(Alden, Delmore)], [Larry’s Brands, [ex, su]], [Other Brands,
other])”

Table 5-17 QueryCategory Functions

Function Description/Example

BUCKET Sums specific values of a single attribute in user-labeled groups.

MyQuery.QueryCategories.Add "BUCKET _
 (Brand, [FirstLabel, list (Techno Components, Suresound)], _
 [SecondLabel, [a, f]], [ThirdLabel, other])"

COMPARE Retrieves values of multiple attributes. A different filter can be
applied to each attribute.

MyQuery.QueryCategories.Add "COMPARE _
 (NOSORT [Brand, Video Only], [Product Class, Audio Only])"
5-40 MetaCube Application Programmer’s Manual

Extension Functions as QueryCategory Expressions
Each set of brackets defines a bucket, and each bucket defines a row or
column in a report. In this example, assuming the QueryCategory has a row
orientation, the resulting report features three rows, one showing sales for
“My Brands,” another the sales for “Larry’s Brands,” and a third the sales of
“Other Brands.” The syntax for each bucket is preceded by an argument
labelling that bucket with a name. The grammar for specifying the values
included within that bucket has three possible components:

■ a list, with specific attribute values in parentheses: [BUCKETNAMEA,
list (Alden, Extreme)]

■ a letter or set of letters or numbers in brackets defining a range of
values: [BUCKETNAMEB, [a, z]]. You may specify the beginning or
end of a letter-defined range with multiple letters, requesting, for
example, attribute values beginning with “qu” and ending with
“th.” The syntax for letter-defined ranges can take four possible
forms:

❑ all values that begin with a letter or set of letters and before:
[BUCKETNAMEB, [all, n]]

❑ all values that begin with a letter or set of letters and after:
[BUCKETNAMEB, [r, all]]

❑ all values that begin with a letter between two letters, including
those letters: [BUCKETNAMEB[o,q]] and

❑ simply all values [all, all];

Please note that reversing the order in which MetaCube sorts
attribute values does not affect buckets defined by letter ranges. If
values are numeric, numbers can be substituted for letters, with the
obvious caveat that numbers must be provided in their entirety as
opposed to a stem of the first digit or digits.

■ the category other, including all attribute values excluded from other
buckets in the expression: [BUCKETNAMEC, other]

Although the examples provided here include all three types of buckets,
please note that you can include as many or as few of buckets of the same or
different types as you require.
Extension Functions as QueryCategory Expressions 5-41

Extension Functions as QueryCategory Expressions
Buckets defined using letter- or number-ranges and lists can overlap,
including the same attribute value in multiple groupings. If the attribute on
which that bucket is based is included as a QueryCategory in a report with
the bucket pivoted to the same orientation, the attribute value will appear
twice, once for each bucket. The numeric sum of the rows or columns
featuring overlapping buckets always increases, as grouping the same trans-
actional data into different buckets repeats values, increasing the total.

The syntax for instantiating a QueryCategory using a bucket expression that
includes all three types of buckets can be generalized:

MyQuery.QueryCategories.Add “BUCKET (Attribute Name, _
[Label1, list ("Value1", "Value2",…)], [Label2, _
[number/letter, number/letter]], [Label3, OTHER])”

MetaCube API Exercise 16 on page 5-44, illustrates the deployment of
buckets in a simple procedure.

Compare

The Compare function includes the values of multiple attributes in a single
QueryCategory, applying to each attribute a different filter. For example, a
Compare function could create a QueryCategory representing sales of three
brands as well as the sales of two product lines. Two attributes are involved,
Brand and Product Line, and two filters, one limiting the number of brands to
only three, the other limiting product lines to only two, resulting in a total of
five different groupings.

The resulting report will thus feature five columns or five rows for that
QueryCategory, depending on its orientation. To answer this query,
MetaCube will issue two queries, one for Brand, the other for Product Line.
Bringing information about both product lines and brands to one report
enables analysts to compare seemingly dissimilar groupings.

The Compare function can include any number of attributes, each filtered
differently. Moreover, the filters applied to such attributes can limit data by
multiple criteria, even including constraints from different dimensions. For
example, the filter on Brand could also include a constraint on time, limiting
the sales data for those three brands to the most recent six months of sales.
Although a filter may be comprised of multiple constraints, you cannot apply
more than one filter to a single attribute within a comparison unless you
actually compare an attribute to itself, such that the attribute is repeated as
an argument but each time with a different filter applied.
5-42 MetaCube Application Programmer’s Manual

Extension Functions as QueryCategory Expressions
The Compare function can be thought of as returning a set of attribute values
to a QueryCategory. As such, this function appears as an expression when
instantiating a QueryCategory. For each entity included in the comparison,
you must specify the name of an attribute followed by the name of the filter
to be applied to that attribute. Each entity appears in brackets.

As noted previously, the Compare function can incorporate any number of
entities in a single QueryCategory. For each entity included in a comparison,
MetaCube must issue a separate SQL statement, consolidating results within
MetaCube’s analysis engine.

The example provided below applies the Audio Only filter to Brand,
comparing sales for that entity to a second entity in which a Computer Only
filter is applied to Product Subclass:

MyQuery.QueryCategories.Add “COMPARE (NOSORT,
[Brand, Audio Only], [Product Subclass, Computer Only])”

The first argument indicates whether the values of all entities should be
sorted as a group, or whether each entity should remain distinct. In our
example, the NOSORT flag directs the function to sort the two entities
separately so that brand names appear first and product subclass names
second.

Conversely, the SORT flag directs the function to sort all attribute values
together, irrespective of the entity to which they belong. Applying an indis-
criminate sort to a comparison between brands and product subclasses
would, for example, result in a report in which brand names like “Lasertech”
appear beside product subclass names like “Laser Disc Players.”

Regardless of whether the entities are sorted separately or together, the actual
direction of the sort can be set by assigning a value to the QueryCategory’s
SortDirection property, as documented in Table 8-7 on page 8-23.

The syntax for a Compare function can be generalized as follows:

MyQuery.QueryCategories.Add “COMPARE, (SORT/NOSORT,
[Attribute Name, Filter Name], [Attribute Name,
Filter Name],…)”

Please note that if you substitute the word ALL for the filter name, no filter
will be applied to the entity.
Extension Functions as QueryCategory Expressions 5-43

Extension Functions as QueryCategory Expressions
MetaCube API Exercise 16 illustrates the deployment of both Bucket and
Compare expressions in a procedure. The Bucket expression groups brands
by their hypothetical brand managers, Brendan and Glenn. The Compare
function retrieves brand sales for a region, Northeast, and a city within that
region, New York. A Percent of Previous function calculates the fraction of
regional sales that can be attributed to New York for both brand managers.

MetaCube API Exercise 16: Buckets and Comparisons
1 Sub Buckets_and_Comparisons()

2 'Declare Variables
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyMetacube As Object, MyData As Variant
5 Const OrientationColumn = 2

6 'Connect
7 Set MyMetabase = CreateObject("Metabase")
8 Let MyMetabase.Login = “MetaDemo”
9 MyMetabase.Extensions.Add _

10 "c:\metacube\mcplgmn.mcx"
11 MyMetabase.Connect

12 'Define Query
13 Set MyQuery = _ MyMetabase.Queries.Add("Untitled1")
14 MyQuery.QueryCategories.Add _
15 "BUCKET (Brand, [Glenn's Sales, List(Alden, _
16 Barton,Extreme)], [Brendan's Sales, Other])"

17 MyQuery.QueryCategories.Add _
18 "COMPARE (NOSORT, [Region, Northeast], _
19 [City, New York])"

20 MyQuery.QueryCategories.Item(1).Orientation = _
21 OrientationColumn
22 MyQuery.QueryItems.Add "Units Sold"

23 MyQuery.QueryItems.Add _
24 "PCT_PREV (Units Sold)"

25 'Get Results
26 Worksheets.Item("Query Report").Activate
27 Cells.Select
28 Selection.ClearContents
5-44 MetaCube Application Programmer’s Manual

Extension Functions as QueryCategory Expressions
29 Set MyMetacube = MyQuery.MetaCubes.Add("Data")
30 Let MyData = MyMetacube.ToVBArray
31 Set ReportRange = ActiveSheet.Range _
32 (ActiveSheet.Cells(1, 1), _
33 ActiveSheet.Cells _
34 (MyMetacube.Rows, MyMetacube.Columns))
35 Let ReportRange.Value = MyData
36 ReportRange.EntireColumn.AutoFit

37 End Sub

Executing this procedure generates the report displayed in Table 5-18, in
which brands are grouped into two buckets, labeled Brendan and Glenn, and
sales of those brands are evaluated for the Northeast region and the city of
New York. A Percent of Previous function compares the two columns of data,
indicating the extent to which New York contributes to the sales in the
Northeast region of the brands managed by Brendan and Glenn.

Table 5-18 Report Generated by MetaCube API Exercise 16

COMPARE (NOSORT, [Region, Northeast],
[City, New York]) Northeast New York New York

BUCKET (Brand, [Glenn',
List(Alden, Barton, Extreme)],
 [Brendan Sales, Other])

Units Sold Units Sold PCT_PREV
(Units Sold)

Brendan 3699 1424 38.496

Glenn 3558 1393 39.151
Extension Functions as QueryCategory Expressions 5-45

Extension Functions as QueryCategory Expressions
5-46 MetaCube Application Programmer’s Manual

6
Chapter
The FactTable Class of Objects
and Related Collections
The FactTable Class of Objects 6-3
The FactTable Collection's Add Method 6-3
FactTable Properties 6-4
FactTable Methods 6-6
FactTable Collections 6-6

The Aggregate Class of Objects 6-7
The Aggregate Collection’s Add Method 6-8
Aggregate Properties 6-9
Aggregate Methods 6-12
Aggregate Collections 6-12

The AggregateGrant Class of Objects 6-13

The AggregateGroup Class of Objects 6-14

The AggregateIndex Class of Objects 6-15

The AggregateMeasure Class of Objects 6-16

The DimensionMapping Class of Objects 6-18
DimensionMapping Properties 6-19

The Dimension Class of Objects, as Owned by a FactTable Object . . . 6-21

The Measure Class of Objects 6-21
The Measure Collection’s Add Methods 6-22
Measure Properties 6-23
MetaCube API Exercise 17: User-Defined Measures 6-25

Explanation of MetaCube API Exercise 17 6-26

The Sample Class of Objects. 6-28
The Sample Collection’s Add Method 6-28
Sample Properties 6-28

6-2 Meta
MetaCube API Exercise 18: Sampling 6-32
Explanation of MetaCube API Exercise 18 6-33

The SampleQualifier Class of Objects. 6-35
SampleQualifier Properties 6-35
Cube Application Programmer’s Manual

This chapter introduces the FactTable Class of objects and all the
collections either directly or indirectly belonging to objects of this class. The
FactTable object class, and the collections belonging directly or indirectly to
that class, enable you to develop procedures that create, edit, or access
MetaCube’s metadata.

The FactTable Class of Objects
A fact table stores all transaction-level data in the Data Warehouse and sits at
the center of a star or snowflake model. The FactTable object describes the
physical location of this table as well as the dimensions to which it joins, its
size, the measures it contains, and other information.

The FactTable Collection's Add Method
To instantiate a FactTable object, we must identify the parent Metabase that
owns the collection of Fact Table objects to which this object will belong as
well as the following arguments: the name of the newly-instantiated object,
the name of the database fact table, and the schema/location of that table. We
present these arguments in the format: MyMetabase.FactTables.Add Name,
Schema, Table.

For example, to instantiate a FactTable object named “Marketing Data
Source” based on a table in the METADEMO schema named
MARKETING_FACT, we would execute the following command:

MyMetabase.FactTables.Add "Marketing Data", _
"METADEMO", "MARKETING_FACT"

The arguments of the collection’s Add method correspond to Fact Table
properties discussed below.
The FactTable Class of Objects 6-3

FactTable Properties
FactTable Properties
Table 6-1 summarizes the properties of the FactTable object class.

Table 6-1 FactTable Class of Objects: Properties

Property Description/Example

Cost Long integer. The performance cost of accessing the fact table,
roughly correlated to the size of the table. MetaCube identifies
the optimal table from which to return a result by assessing cost.
Defaults to the highest possible number.

MyFactTable.Cost = 30000

IconBitmap String. Warehouse Manager converts the icon associated with a
fact table from a bitmap to string information, and stores this
string in the database. This value’s property is thus the string
representation of the icon.

MsgBox MyFactTable.IconBitmap

IconName String. Name of original bitmap file for storing icon that repre-
sents this dimension. No default.

MyFactTable.IconName = "CASH.ICO"

Measure-
Names

ValueList of names for all of the fact table’s measure’s.
Arguments: Display type constants to display the items
validated for queries, filters, or both. See Table 4-2 on page 4-7.

MsgBox MyFactTable.MeasureNames(2)

Name String. The name of the fact table. Default property.

MsgBox MyFactTable.Name

Parent Object. The Metabase object owning the collection to which this
fact table belongs.

MsgBox MyFactTable.Parent.Name

Schema String. The schema/location wherein the fact table physically
resides.

MyFactTable.Schema = "METADEMO"

Table String. The name of the database table itself.

MyFactTable.Table = "SALES_TRANSACTIONS"
6-4 MetaCube Application Programmer’s Manual

FactTable Properties
TableSize Long. Stores the precise number of rows in the table, irrespective
of other performance issues such as indexing or partitioning. The
administrator must enter a value for this property so that
MetaCube can compare the size of sample tables to the original
fact table and thereby derive the margin of error attributable to
such samples.

MyFactTable.TableSize = 12102

ValidFlag Boolean. A true value indicates the fact table is valid for
querying. False otherwise. Default upon instantiation is false.

MyFactTable.ValidFlag = True

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for a fact table is one of
the following:

■ completely valid

■ invalid because at least one Aggregate, AggregateMeasure,
DimensionMapping, Measure, or Sample object owned by the
FactTable object is invalid

■ invalid because the FactTable object itself is invalid.

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyFactTable.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the FactTable object’s metadata. This
will not include errors in the metadata for other objects
belonging to the FactTable object.

MsgBox FactTable.VerifyResults.TabbedValues

Table 6-1 FactTable Class of Objects: Properties (continued)

Property Description/Example
FactTable Properties 6-5

FactTable Methods
FactTable Methods
Aside from the standard Verify method, the Fact Table’s only method is the
WriteIcon method, which converts the string value of the IconBitMap
property to a standard icon file on the client. This method allows you to
specify the directory in which to create the icon file, with the MetaCube
directory as the default:

MyFactTable.WriteIcon "C:\METACUBE"

This method parallels the structure of the Dimension object class’s WriteIcon
method, discussed in “Dimension Methods” on page 4-6.

FactTable Collections
A FactTable object’s collections include objects representing all of the tables
and columns from which a query could possibly retrieve data, including the
dimension tables to which the fact table joins to consolidate transactional
information, the aggregate tables storing summarizations of those transac-
tions, and the columns storing the numerical measures.

Table 6-2 explains each of the FactTable object’s collections.

Table 6-2 FactTable Class of Objects: Collections

Collection Description/Example

Aggregates A collection of objects that describe aggregate tables. Aggregate
tables summarize transactions stored in the fact table to deliver
better query performance.

MsgBox MyFactTable.Aggregates.Names

Dimension-
Mappings

For each dimension to which a particular fact table joins, there
must exist a DimensionMapping object describing the join itself
as well as how to display the dimension to users querying that
fact table. Because a dimension can join to more than one fact
table and because for each fact table an application may present
the dimension in a different way, you can define the relationship
between a fact table and a dimension separately through the
objects in this collection. A fact table’s DimensionMapping
objects should correspond exactly to a fact table’s Dimension
objects.

MsgBox MyFactTable.DimensionMappings.Names
6-6 MetaCube Application Programmer’s Manual

The Aggregate Class of Objects
The Aggregate Class of Objects
This object class describes aggregate tables. Aggregate tables improve query
performance by storing summary-level data. It is only a slight simplification
to understand each aggregate table as a repository for a certain query result.
If a user requests that result or information that can be derived from that
result, MetaCube can satisfy his or her request more quickly by retrieving
information from the aggregate table.

Dimensions A subset of the DSS System’s library of available dimensions,
consisting of those dimensions to which the fact table joins, that
is, a subset of the Dimension objects in a collection owned by a
Metabase object. Deleting a dimension from this collection only
signifies that the dimension cannot join to the fact table owning
the collection. Other fact tables may continue to join to this
dimension. However, any changes made to a dimension object
within this collection are registered for the entire DSS System.

MsgBox MyFactTable.Dimensions.Names

Measures A collection of numeric, additive metrics stored in, or calculated
from, columns in the fact table.

MsgBox MyFactTable.Measures.Names

Samples Consists of objects describing sample tables. Sample tables store
a statistically significant, evenly distributed set of records repli-
cated from the fact table. Sophisticated statistical algorithms
enable MetaCube to extrapolate query results within a
prescribed range of accuracy from sample tables. Since sample
tables are a fraction of the original fact table’s size, such tables
offer better performance.

MsgBox MyFactTable.Samples.Names

Table 6-2 FactTable Class of Objects: Collections (continued)

Collection Description/Example
The Aggregate Class of Objects 6-7

The Aggregate Collection’s Add Method
Of course, a query requesting information at any level of summarization can
always retrieve transaction level information from the fact table, consoli-
dating the detail into larger groupings by joining to dimension tables. But
scanning and joining large tables poses intractable performance problems.
Aggregates enable certain queries to bypass large fact tables and sometimes
dimension tables to reduce the number of rows the database must process. In
an intelligently aggregated Data Warehouse, only queries requesting detail-
level data require fact table processing.

Aggregate tables summarize transactions in the fact table by a complex set of
high-level elements in a dimensional hierarchy. For each fact table, there
should exist a set of aggregate tables to improve performance for queries
against that fact table. Although aggregates improve performance, you need
not expose a view of aggregates to users of a MetaCube query application, as
MetaCube automatically and transparently routes each query to the optimal
aggregate table, if one exists. For each fact table, there should exist a set of
aggregate tables to improve performance for queries ostensibly against that
fact table.

Each aggregate table is thus associated with both the fact table that it summa-
rizes and its corresponding Aggregate object existing within a collection
owned by a FactTable object. Since aggregates are always calculated directly
from a fact table, an Aggregate object cannot exist outside of a collection
owned by a fact table.

The Aggregate Collection’s Add Method
Instantiating an Aggregate object to describe or create a new summary table
in the relational database requires you to specify three arguments: the name
of the object, the name of the schema/location storing the table represented
by that object, and the name of the table itself. For example, to describe table
named “SALES_AGG1” in the “METADEMO” schema, we could instantiate
a an aggregate object named “Sales”:

MyFactTable.Aggregates.Add "Sales", "METADEMO", "SALES_AGG1"

The new object will belong to MyFactTable’s collection of Aggregate objects.
6-8 MetaCube Application Programmer’s Manual

Aggregate Properties
Aggregate Properties
An Aggregate object’s properties can either describe an existing aggregate
table, or enable MetaCube to generate the SQL statements to create a new
aggregate table. Whereas the values of Dimension and FactTable objects
merely describe database tables, the values of an Aggregate object’s
properties constitute a blue-print for building tables.

In truth, the values of all three object classes’ properties populate MetaCube’s
metadata tables, which traditionally describe the data model. Unlike other
object classes, however, the Aggregate object class can generate SQL on the
basis of the metadata, in effect reverse-engineering a database table from the
metadata description. MetaCube can populate the new table by querying
existing fact and dimension tables. If the underlying aggregate table already
exists, the values of the Aggregate object’s properties as well as its collections
will depend on that table’s physical characteristics. If the table does not yet
exist, the characteristics of that table will depend on the values of the
Aggregate object’s properties and on its collections.

MetaCube Aggregator, MetaCube’s server-side agent for aggregate
construction and maintenance, can execute the SQL stored in the Create-
Statement and TableOptions properties. Aggregate object properties such as
the SchemaPassword property exist to automate the process of actually
building the aggregate through Aggregator. You can also execute the SQL
MetaCube generates from any other database development environment.

Table 6-3 summarizes the properties of the Aggregate class of objects.

Table 6-3 Aggregate Class of Objects: Properties

Property Description/Example

Cost Long integer: The performance cost of accessing the aggregate
table, roughly correlated to the number of rows in the table.
MetaCube identifies the optimal table from which to return a
result by assessing costs. The values of an aggregate’s cost and a
fact table’s cost should be similarly scaled, so that, for example,
the cost of a fact table containing twice as many rows as an
aggregate will be twice as high as the aggregate’s cost. Defaults
to the highest possible number.

MyAggregate.Cost = 30000
Aggregate Properties 6-9

Aggregate Properties
Create-
Statement

String. For any completely-defined Aggregate object, MetaCube
can generate SQL to create the physical table that the object
ostensibly describes, storing the CREATE statement as a value of
this property. In other words, you can instantiate and define an
Aggregate object and its collections when the actual aggregate
table does not exist and thereby generate the SQL to create the
table. MetaCube Aggregator, a server-side agent, can execute this
SQL when prompted to do so. The GenSQL method generates
the SQL stored by this property.

MsgBox MyAggregate.CreateStatement

Filter Filter Object: This read-only property identifies a filter object,
which is a collection of constraints by which the aggregate table
is partitioned. Each constraint is instantiated as a FilterElement
object. The Filter object owned by an aggregate is identical to the
Filter object owned by a query, although it cannot be opened or
saved. Other properties and methods that normally apply to a
Filter object are invalid. Just as you can filter a query, effectively
placing a WHERE clause in the SQL retrieving your query result,
you can place a constraint within the SQL generated to build and
populate an aggregate table. Defaults to empty.

MsgBox MyAggregate.Filter.Name

LastUpdate Variant; date: Indicating the date of the aggregate’s most recent
update, for maintenance purposes.

MsgBox MyAggregate.LastUpdate

Name String: The name of the Aggregate object. Default property.

MsgBox MyAggregate.Name

Parent Object: The FactTable object owning the collection to which the
aggregate belongs.

MsgBox MyAggregate.Parent.Name

Schema String: The name of the schema storing the aggregate table.

MyAggregate.Schema = "METADEMO"

Table 6-3 Aggregate Class of Objects: Properties (continued)

Property Description/Example
6-10 MetaCube Application Programmer’s Manual

Aggregate Properties
Schema-
Password

String. A password string for the database schema storing the
aggregate, stored in an encrypted format on the database.
MetaCube Aggregator requires this password to execute the SQL
building the aggregate in that schema.

MyAggregate.SchemaPassword = "WELCOME"

Table String: The name of the aggregate table.

MyAggregate.Table = "SALES_AGG9"

TableOptions String. Beyond the commands represented by the Create-
Statement property, this property stores any database-specific or
custom SQL statements necessary to build the aggregate.
MetaCube Aggregator executes the TableOptions commands
together with the CREATE statement.

MsgBox MyAggregate.TableOptions

ValidFlag Boolean: Indicates whether the aggregate is currently valid for
queries; defaults to false.

MyAggregate.ValidFlag = False

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for an aggregate table is
one of the following:

■ completely valid

■ invalid because at least one AggregateMeasure or Aggregate-
Group object owned by the Aggregate object is invalid

■ invalid because the Aggregate object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyAggregate.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the Aggregate object’s metadata. This
will not include errors in the metadata for other objects
belonging to the Aggregate object.

MsgBox MyAggregate.VerifyResults.TabbedValues

Table 6-3 Aggregate Class of Objects: Properties (continued)

Property Description/Example
Aggregate Properties 6-11

Aggregate Methods
Aggregate Methods
Aside from the standard Verify method, the Aggregate class of object
features only one method, GenSQL, which prompts MetaCube to generate
SQL from the metadata description of a new Aggregate object. Because the
properties and collections of the Aggregate object already specify all of the
parameters for creating the database table, this method requires no
arguments. GenSQL returns the SQL as a string value:

MyAggSQL$ = MyAggregate.GenSQL

Aggregate Collections
The Aggregate object is, in large part, defined by several collections of
component objects. Table 6-4 summarizes these collections.

Table 6-4 Aggregate Class of Objects: Collections

Collection Description/Example

Aggregate-
Grants

A collection of objects representing SQL GRANT statements,
which are used for conferring privileges to view aggregate
tables.

MyAggregate.AggregateGrants.Add _
 "GRANT SELECT ON sales_agg1 to METADEMO"

Aggregate-
Groups

Each AggregateGroup object identifies a DimensionElement or
Attribute object by which data is summarized in the aggregate
table. This attribute or dimension element must be included in
one of the dimensions to which the fact table joins. The objects in
the AggregateGroups collection also identify the column in the
aggregate table storing that dimension element or attribute's
values.

MyAggregate.AggregateGroups.Add _
 MyDimEl, "BRAND_CODE"
6-12 MetaCube Application Programmer’s Manual

The AggregateGrant Class of Objects
The AggregateGrant Class of Objects
This object class allows you to define the grants for a new aggregate, which
MetaCube Aggregator executes when creating the aggregate table.
Aggregate objects that describe existing tables need not include any Aggre-
gateGrant objects in this collection, as the necessary grants probably already
exist.

Aside from the Parent property, which identifies the Aggregate object that
owns the AggregateGrant object’s collection, the only property of the Aggre-
gateGrant object is the GrantStatement property. The string value of this
property, which you specify as an argument when instantiating an Aggre-
gateGrant, is simply the GRANT SQL statement, which MetaCube stores in
the metadata tables for MetaCube Aggregator to execute when building the
aggregate. An example of this syntax can be found in Table 6-4.

The AggregateGrant object does not feature any collections or methods.
Specifically, MetaCube does not include a method for generating GRANT
SQL statements. You must formulate them yourself.

Aggregate-
Indexes

A collection of objects storing indexes for a new aggregate table.
Aggregator automatically executes the SQL statement creating
the index when it builds the aggregate. When instantiating the
AggregateIndex object, include the SQL statement as an
argument.

MyAggregate.AggregateIndexes.Add _
 "CREATE UNIQUE INDEX myindex ON...", _
 "METACUBE.", ""

Aggregate-
Measures

Each AggregateMeasure object identifies one of the fact table's
Measure objects, thereby including that measure in the aggregate
table as well. When instantiating this object, you must also
identify the column in the aggregate table storing that measure.

MyAggregate.AggregateMeasures.Add _
 MyMeasure, "UNITS_SOLD"

Table 6-4 Aggregate Class of Objects: Collections (continued)

Collection Description/Example
The AggregateGrant Class of Objects 6-13

The AggregateGroup Class of Objects
The AggregateGroup Class of Objects
Each AggregateGroup object describes one of the dimension elements or
attributes by which you summarize data in an aggregate table. Whereas a fact
table may define a sales transaction in terms of base dimension elements such
as product code or store code, an aggregate table groups sales by brand or by
region. As the number of dimensions increases, identifying the optimal level
of detail at which to summarize transactions in aggregate tables may become
difficult. MetaCube Warehouse Optimizer can analyze your Data Warehouse
to recommend the most effective set of aggregates to build.

Aside from the standard Parent, Verified, and VerifyResults properties, this
object class features only two other properties, no collections, and only one
method, the Verify method. The verification properties and methods
evaluate the validity of the metadata defined by an object’s other properties,
as explained above.

The first property, Category, refers to either an Attribute or Dimension-
Element object that defines the level of detail for a particular dimension by
which metrics are grouped. You must include this argument when instanti-
ating an AggregateGroup object:

MyAggregate.AggregateGroups.Add MyFactTable. _
Dimensions.Item(0).DimensionElements.Item(1), "BRAND_CODE"

The second argument in this command, a value of the Column property,
identifies the column in the aggregate table in which the actual dimension
element or attribute values are stored.

Please note that an aggregate can group transactions by values of any
attribute or dimension element that belongs to a dimension joined to the fact
table. Also note that, although MetaCube supports aggregates built on
attributes, aggregates that summarize information by dimension element
values are much more flexible and powerful, as they can join to dimension
tables to process any query requesting a level of summarization equal to or
greater than the level stored in the aggregate itself. Since attribute values do
not represent a key to any other table, aggregates built by attribute can only
process queries requesting data grouped by that particular attribute’s values.
6-14 MetaCube Application Programmer’s Manual

The AggregateIndex Class of Objects
Please note that you must instantiate an AggregateGroup object for each
dimension element or attribute included in the aggregate table, regardless of
whether that table already exists or remains to be built. MetaCube deter-
mines an aggregate’s level of summarization and its suitability for processing
a given query by evaluating the properties of that aggregate’s Aggregate-
Group objects.

The AggregateIndex Class of Objects
The AggregateIndex object stores any indexes you wish to place on a new
aggregate table. Although MetaCube cannot generate indexes, MetaCube
Aggregator will execute whatever SQL statements are stored in the Aggre-
gateIndex object’s IndexStatement property when building the aggregate
table. You need not instantiate AggregateIndex objects for existing aggregate
tables, as MetaCube invokes this object only when building new aggregates.

To instantiate an AggregateIndex object you must include the SQL statement
creating the index as an argument to the Add method:

MyAggregate.AggregateIndexes.Add _
"CREATE UNIQUE INDEX myindex ON table(column)"

In addition to the IndexStatement property, the AggregateIndex object
includes properties for storing the name of the schema owning the index, as
well as any database-specific or custom SQL statements associated with the
index.

Table 6-5 summarizes the AggregateIndex object’s properties.

Table 6-5 AggregateIndex Class of Objects: Properties

Property Description/Example

IndexOptions String: Stores custom SQL parameters for creating an index.

MsgBox MyAggregateIndex.IndexOptions

IndexSchema String: Identifies the schema that owns the index.

MyAggregateIndex.IndexSchema = "METADEMO"
The AggregateIndex Class of Objects 6-15

The AggregateMeasure Class of Objects
The AggregateIndex object does not feature any methods or collections.

The AggregateMeasure Class of Objects
The AggregateMeasure object identifies a measure either included in an
existing aggregate table or that will be included when a new aggregate is
built. Together, an Aggregate object’s collection of AggregateMeasure objects
define the measures stored in an aggregate table. To include calculated
measures in the aggregate table, you need only include the measures on
which the calculation for that measure is based.

Regardless of whether you are describing an existing aggregate or a new
aggregate, you must instantiate an AggregateMeasure for each measure in
the aggregate, as MetaCube evaluates the properties of the Aggregate-
Measure object when generating SQL for a query.

Please note that an aggregate can only include measures already stored at the
transactional level in the fact table. If, for example, a fact table does not store
the revenues generated by a transaction, the aggregate table cannot store the
revenues generated by a group of transactions.

To identify the measures included in an aggregate table, you must specify the
Measure object and the name of the column in the aggregate in which to store
the measure identified by the Measure object. Both the Measure object and
the column name appear as arguments in the AggregateMeasure collection’s
Add method:

MyAggregate.AggregateMeasures.Add _
MyMetabase.FactTables.Item(0).Measures.Item(2), "SALES"

Index-
Statement

String. The actual SQL statement used to create the index.
Default property.

See example above.

Parent Object. Aggregate object.

MsgBox MyAggregateIndex.Parent.Name

Table 6-5 AggregateIndex Class of Objects: Properties (continued)

Property Description/Example
6-16 MetaCube Application Programmer’s Manual

The AggregateMeasure Class of Objects
These arguments correspond to the Measure and Column properties, respec-
tively. The Measure property identifies a Measure object within the FactTable
object’s collection of Measure objects, and the Column property identifies as
a string the name of the column that stores that measure’s values in the
aggregate table. Once you have instantiated an AggregateMeasure object,
you can edit the values of either property to reflect changes to the data model:

MyAggregateMeasure.Measure = MyFactTable.Measures.Item(1)
MyAggregateMeasure.Column = "GROSS_REVENUES"

Please note that MetaCube currently only supports aggregates that
additively summarize or group information. For example, if you build an
aggregate summarizing the measure Sales by the aggregate group Brand Code,
the aggregate totals sales for each brand.

Table 6-6 summarizes the properties of the AggregateMeasure object.

Table 6-6 AggregateMeasure Class of Objects: Properties

Property Description/Example

Column String: Stores the name of the aggregate table column storing the
measure's values.

MyAggregateMeasure.Column = "GROSS_REVENUES"

Function String: Identifies the type of summarization to perform on the
measure. Defaults to "SUM," but COUNT, MIN, and MAX
functions are also supported.

MyAggregateMeasure.Function = "SUM"

Measure Object: Identifies a Measure object from the FactTable collection
for inclusion in the aggregate. Default property.

MyAggregateMeasure.Measure = _
 MyFactTable.Measures.Item(1)

Parent Object: Aggregate object.

MsgBox MyAggregateMeasure.Parent.Name
The AggregateMeasure Class of Objects 6-17

The DimensionMapping Class of Objects
Aside from the standard Verify method, AggregateMeasure objects do not
feature any methods and do not own any collections.

The DimensionMapping Class of Objects
The DimensionMapping class of objects describes how a particular fact table
joins to a dimension table and how to display that dimension table in inter-
faces. Whereas the Dimension object itself defines a dimension generally, the
DimensionMapping object defines a dimension’s particular relationship to a
fact table.

For each Dimension in a FactTable object’s collection, there must exist a corre-
sponding DimensionMapping object describing the relationship between the
two. By describing the relationship between dimensions and fact tables in a
separate object, MetaCube enables you to join a dimension to two different
fact tables, even though the dimension may join to a different column in each
fact table or it should be displayed in a different position for each fact table.

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for an aggregate measure
is either:

■ completely valid

■ invalid because the AggregateMeasure object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyAggregateMeasure.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the AggregateMeasure object’s
metadata.

MsgBox MyAggregateMeasure.VerifyResults.TabbedValues

Table 6-6 AggregateMeasure Class of Objects: Properties (continued)

Property Description/Example
6-18 MetaCube Application Programmer’s Manual

DimensionMapping Properties
For example, since the relationships between days, weeks, months, and year
hardly vary from one type of data to another, you may want to join a Time
dimension table to both a sales and a marketing fact table. The Dimension
object defines the Time dimension, but the DimensionMappings object
defines how that dimension joins to each fact table.

When a user chooses to query one of the two fact tables, a property of the
DimensionsMapping object can determine how to display the dimension in
the ensuing query interface. Explorer prompts a user to make just such a
choice in the Choose Data Source Window, in which each data source corre-
sponds to a different fact table and its associated dimensions.

DimensionMapping Properties
DimensionMapping objects underpin Warehouse Manager’s Fact Table
Dimensions. The properties of a DimensionMapping object parallel the fields
of Warehouse Manager’s Fact Table Dimension frame. Table 6-7 summarizes
the DimensionMapping object’s properties.

Table 6-7 DimensionMapping Class of Objects: Properties

Property Description/Example

Dimension Object: Identifies an existing dimension object to which the other
properties of the DimensionMapping object apply. Default
property.

My MyDimensionMapping.Dimension = _
 MyFactTable.Dimensions.Item(0)

FactTable-
Column

String: Identifies the column in the fact table to which the
dimension joins, typically via a base dimension element.

MyDimensionMapping.FactTableColumn = "STORE_CODE"

Parent Object: The FactTable object.

MsgBox MyDimensionMapping.Parent.Name
DimensionMapping Properties 6-19

DimensionMapping Properties
Aside from the standard Verify method, the DimensionMapping object does
not feature any methods, nor does it own any collections.

ScreenOrder Integer: Determines the order in which Explorer displays the
specified dimension for a given data source/fact table. Other
MetaCube query applications can also retrieve this integer value
to determine the order in which their interfaces display dimen-
sions for a given fact table.

ActiveSheet.ListBoxes.Add _
 ((MyDimensionMapping.ScreenOrder * 80), 50, 70, 100)

Verified This property stores a long value returned by the Verify method
indicating that the metadata represented by a Dimension-
Mapping object is either:

■ completely valid

■ invalid because the DimensionMapping object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyDimensionMapping.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the DimensionMapping object’s
metadata.

MsgBox MyDimensionMapping.VerifyResults.TabbedValues

Table 6-7 DimensionMapping Class of Objects: Properties (continued)

Property Description/Example
6-20 MetaCube Application Programmer’s Manual

The Dimension Class of Objects, as Owned by a FactTable Object
The Dimension Class of Objects, as Owned by a
FactTable Object
The collection of Dimension objects owned by a particular FactTable object is
a subset of the collection owned by a Metabase object and consists of only
those dimensions within the DSS System to which the underlying fact table
joins. The DimensionMapping collection of objects determines which
Dimension objects are included in this collection. The DSS System identified
by a Metabase object thus includes a library of dimensions, all or only some
of which may join to one of the fact tables within that dimension.

All of the properties, methods, and collections related to the Dimension class
of objects apply to the object regardless of whether it is identified as a
member of a collection owned by a FactTable object or by a Metabase object.
However, deleting a DimensionMapping object from a collection owned by a
FactTable object only signifies that a particular fact table does not join to that
dimension, whereas deleting a Dimension object from a Metabase object’s
collection of Dimension objects collection deletes the Dimension object
generally.

For a full discussion of the Dimension object, its properties, methods, and
collections see “The Dimension Class of Objects” on page 4-3.

The Measure Class of Objects
The Measure object represents a type of additive, numerical data stored in the
fact table and its aggregates. Examples of a measure in the demonstration
Data Warehouse include Units Sold, and Gross Revenues. Each Measure object
corresponds to a column in the fact table storing values of that measure for
each transaction or to a calculation based on other Measure objects repre-
senting columns in the fact table.
The Dimension Class of Objects, as Owned by a FactTable Object 6-21

The Measure Collection’s Add Methods
The Measure Collection’s Add Methods
To instantiate a standard Measure object, you must specify the name of the
measure, and its definition:

MyFactTable.Measures.Add _
"Units Sold", "SUM(COLUMN('UNITS_SOLD'))"

The first argument identifies the name of the object; the second provides the
name of the column in the fact table storing that measure. Once instantiated,
this object remains in memory and is saved as metadata only when the
Metabase object saves any changes made to the entire DSS System. Both
arguments correspond to properties of the Measure object, as explained in
the next section.

A separate instantiation method, AddUserMeasure, creates a user-defined
Measure object, which is available only to the author, as identified by his or
her login, and which can be deployed on-the-fly. This method, which requires
the same arguments as the standard Add method, creates a Measure object
that is otherwise indistinguishable from a standard Measure object:

MyFactTable.Measures.AddUserMeasure _
"My Units Sold", "SUM(COLUMN('UNITS_SOLD'))"

The application need not save the entire DSS System to the database to
register the measure. A special method, SaveUserMeasure, performs this
task:

MyFactTable.Measures.Item “My Units Sold” _.SaveUserMeasure

Aside from the standard Verify method, the Measures class of objects does
not feature any other methods, nor does it own any collections.
6-22 MetaCube Application Programmer’s Manual

Measure Properties
Measure Properties
The properties of a Measure object specify a column in the fact table storing
that measure’s values or store a formula based on columns in the fact table.
These properties also determine which measures are displayed in query and
filter interfaces, their order of appearance, and their format. Table 6-8
summarizes the Measure object’s properties.

Table 6-8 Measure Class of Objects: Properties

Property Description/Example

BalloonHelp String: A brief explanation of the measure's significance to end-
users; used in balloon help messages such as those available in
Explorer.

MyMeasure.BalloonHelp = "The sales metric, stupid!"

Calculated Boolean, read-only: stores a true value if the measure is derived
from a formula, false if the measure directly accesses data stored
in columns of fact and aggregate tables.

MsgBox MyMeasure.Calculated

Constraint FilterElement Object: Identifies a constraint to apply against the
values of a calculated measure to preclude returning undesirable
records, such as negative numbers or zero. For a discussion of
measure constraints, see the MetaCube Warehouse Manager’s
Guide. FilterElement objects are discussed in “FilterElement
Class of Objects: Properties” on page 8-36.

MyMeasure.Constraint.FilterElements.Add _
 "Units Sold", ">", "0"

Definition String. The definition of this measure, which can identify a
column in the database storing a measure or define a formula
based on other measures. To identify a measure stored in a
column, follow the example provided on the previous page.
Each term within a formula must be preceded by the syntax
"SUM," “MIN,” “MAX,” “COUNT” or “AVG” with the
argument of that function in parentheses. Each measure is
identified by the syntax "FACT," followed by the name of the
measure in single quotes and parentheses. Accepted operators
are +, -, /, and *. See the MetaCube Warehouse Manager’s Guide for
more details.

MyMeasure.Definition = _
 "FACT('Gross Revenue')-FACT('{Profit')"
Measure Properties 6-23

Measure Properties
DisplayStyle Long: Indicates whether the measure is valid for display in a
query interface, a filter interface, or both. Defaults to both. For a
listing of numeric values and their significance as arguments, see
the DisplayStyle constants in Table 4-2 on page 4-7.

MyMeasure.DisplayStyle = 2

FormatString String: identifies the default format of the measure. The report
application or control interprets the contents of the string, and
the syntax varies accordingly. The example pictured here
conforms to Microsoft Excel syntax, which is also understood by
Explorer’s reporting controls. For a comprehensive treatment of
this topic, see “The FormatString and FormatStrings Properties:
An Overview” on page 8-25.

MyMeasure.FormatString = “#,##0.00”

Name String: The name of the Measure object. The default property.

MyMeasure.Name = "Net Profit"

Parent Object. The FactTable object owning the collection to which the
Measure object belongs.

MsgBox MyMeasure.Parent.Name

ScreenOrder Long: Stores a value for ordering the appearance of measures in
a listbox or any other interface control.

MyMeasure.ScreenOrder = 2

UserMeasure Boolean, read-only: stores a true value if the Measure object is
user-defined, false otherwise.

MsgBox MyMeasure.UserMeasure

Valid Boolean: A true value indicates the syntax of the measure
definition is valid. Read-only.

MsgBox MyMeasure.Valid

Table 6-8 Measure Class of Objects: Properties (continued)

Property Description/Example
6-24 MetaCube Application Programmer’s Manual

Measure Properties
MetaCube API Exercise 17 illustrates how to define and deploy a user-
defined measure.

MetaCube API Exercise 17: User-Defined Measures
1 Sub User_Defined_Measure()

2 'Declare Variables and Constants
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyMeasure As Object, MyMetaCube As Object, _
5 MyData As Variant, ReportRange As Range

6 'Login
7 Set MyMetabase = CreateObject("Metabase")
8 MyMetabase.Connect

9 'Create User-Defined Measure
10 Set MyMeasure = MyMetabase.FactTables _
11 .Item("Sales Transactions").Measures _
12 .AddUserMeasure("Sales by Half", _
13 "FACT('Units Sold')/2")
14 MyMeasure.SaveUserMeasure
15 MsgBox MyMeasure.Calculated
16 MsgBox MyMeasure.UserMeasure

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for a measure is either:

■ completely valid

■ invalid because the Measure object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox MyMeasure.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the Measure object’s metadata.

MsgBox MyMeasure.VerifyResults.TabbedValues

Table 6-8 Measure Class of Objects: Properties (continued)

Property Description/Example
Measure Properties 6-25

Measure Properties
17 'Define Query
18 Set MyQuery = MyMetabase.Queries.Add("Untitled1")
19 MyQuery.QueryCategories.Add "Brand"
20 MyQuery.QueryItems.Add "Units Sold"
21 MyQuery.QueryItems.Add "Sales by Half"

22 'Build Report
23 Set MyMetaCube = MyQuery.MetaCubes.Add("Report1")
24 Worksheets.Item("User Measures").Activate
25
26 'Transform Data in Cube into VB Array
27 Let MyData = MyMetaCube.ToVBArray

28 'Import Data into Excel Spreadsheet
29 Set ReportRange = _
30 ActiveSheet.Range _
31 (ActiveSheet.Cells(1, 1), _
32 ActiveSheet.Cells _
33 (MyMetaCube.Rows, MyMetaCube.Columns))
34 Let ReportRange.Value = MyData
35 ReportRange.EntireColumn.AutoFit 'Sizes columns

36 End Sub

Explanation of MetaCube API Exercise 17

This exercise instantiates a Measure object as a private, user-defined object,
available for immediate deployment in a query. In lines 2 through 5 we begin
the procedure by declaring a set of object variables to store the Metabase,
Query, and MetaCube objects necessary to define and to execute a query. We
also declare the object variable MyMeasure, which will store the user-defined
Measure object, and a set of variables for storing data in a Visual Basic array
and subsequently displaying that data in a range of spreadsheet cells.

Lines 7 through 8 establish a multi-dimensional interface to the relational
database, opening the DSS System identified in the “Demo” configuration.

Once connected, we can define a new measure in one of two ways. Instanti-
ating a Measure object using the standard Add method creates a measure
available to all users but first requires us to save the Metabase object. The
AddUserMeasure method of instantiation, shown on lines 10 through 13,
creates a private measure available for immediate use. Users who connect to
the relational database using a configuration with a different login will not be
able to access this measure. In all other respects, a user-defined Measure
object is identical to a Measure object instantiated in the usual way; it has all
the properties and methods of the object class.
6-26 MetaCube Application Programmer’s Manual

Measure Properties
The AddUserMeasure method requires two arguments, the name of the user-
defined measure and its definition. We call the measure, “Sales by Half,” a
name to which we subsequently refer when instantiating a QueryItem on line
19. The definition itself consists of a simple calculation in which we halve
values of the Units Sold measure. The syntax for the definition of measures,
which can be verified using the Measure object’s verify property, is
documented in the MetaCube Warehouse Manager’s Guide.

Rather than saving an entire set of Metadata, we can register the measure as
available by deploying the SaveUserMeasure method, as shown on line 14.
The Message Boxes displayed by lines 15 and 16 both return true values, the
first indicating that our new measure is a calculated measure, the second
indicating that this measure is user-defined.

Once the measure has been saved, we can immediately define a query incor-
porating that measure. The QueryItem object on line 20 refers to the user-
defined measure in the standard way, by name, and the remainder of the
procedure executes the query using syntax that should be familiar from the
tutorial at the beginning of this documentation. Please note that this
procedure requires you to name a spreadsheet “User Measures” prior to
execution.
Measure Properties 6-27

The Sample Class of Objects
The Sample Class of Objects
Sampling improves query performance by orders of magnitude, extrapo-
lating results from tables that are a fraction of the size of the original fact
table. The Sample object class describes such tables, which contain a statisti-
cally significant, evenly distributed set of records replicated from the fact
table.

The Sample Collection’s Add Method
After creating a sample table, register that table in MetaCube’s metadata by
instantiating an object of the Sample class. The Add method for the Samples
collection requires three arguments: the name of the logical object, the name
of the table-owner or schema to which the underlying sample table belongs,
and the name of the sample table itself.

MyMetabase.FactTables.Item(0).Samples.Add _
“Glenn’s Sample”, “METADEMO”, “SALES_SAMP1”

As you would expect, instantiating a sample object assigns values to several
properties of that object, documented below. To remove a Sample object,
identify the Samples collection and deploy the Remove method, general to all
collections, specifying the Sample object to be removed by index number.

Sample Properties
Unlike aggregate tables, the physical structure of which depends on the level
of summarization, sample tables always feature the same columns as the fact
table, differing only in the number of rows they store. Because the structure
of the sample table is not subject to variation, the object that defines the
metadata for a sample table has few properties.
6-28 MetaCube Application Programmer’s Manual

Sample Properties
Table 6-9 summarizes the properties of the Sample object class.

Table 6-9 Sample Class of Objects: Properties

Property Description/Example

Name String: the name of the Sample object. As with the same property
of the Aggregate object, the name of the logical object is largely
irrelevant since users and even application developers never
need specify a sample by name when defining a query.

MySample.Name = “Hardly Matters”

Schema String: the name of the table-owner or schema to which the
sample table belongs.

MySample.Schema = “METADEMO”

Table String: Identifies the underlying sample table by name. Please
note that, aside from the table’s cost, no other information
regarding column names or contents need be included for the
sample table, as its structure is completely derived from the fact
table.

MySample.Table = “SALES_SAMP1”

TableOptions String: Includes any SQL syntax to be appended to the CREATE
statement executed by MetaCube Sampler when creating the
Sample Table.

MySample.TableOptions = “EXTENT SIZE 20”

TableSize Long: The number of rows in a table. This value enables
MetaCube to identify which sample can deliver the specified
degree of accuracy for a query. MetaCube does not evaluate the
costs of aggregates or of the fact table when processing a query
against a sample table.

MySample.TableSize = 4003

Valid Boolean: A true value indicates the availability of a sample table.
Defaults to false.

MySample.Valid = True

ValueList ValueList. A list of values for this sample, retrieved by MetaCube
and stored in the metadata directly; allows applications to
display filter choices rapidly. Read-only.

MsgBox MySample.ValueList.TabbedValues
Sample Properties 6-29

Sample Properties
The Sample object class features no methods and owns no collections.
Related properties and methods of Query and MetaCube object classes
determine which table MetaCube attempts to extrapolate a result from, as
well as the range of error associated with such an extrapolation.

In choosing a sample table, MetaCube weighs both of the following:

■ the accuracy specified for the query, represented by the Accuracy
property of the Query object class

■ the table size of the sample relative to other sample tables, repre-
sented by the TableSize property of the Sample object class

The Accuracy property of a query stores an integral number between 1 and
100, indicating the relative size of the sample against which MetaCube
processes a query. Any value less than the default of 100 prompts MetaCube
to process the query against a sample table.

Verified This property stores a long value returned by the Verify method
indicating that the metadata definition for a Sample object is
either:

■ completely valid

■ invalid because the Sample object itself is invalid

If you have not invoked the Verify method, this property defaults
to VerifiedNever, indicating that the metadata is unverified. The
significance of each of the numeric codes stored by the Verified
property is explained in Table 3-6 on page 3-16.

MsgBox Sample.Verified

VerifyResults This property stores the ValueList returned by the Verify method
describing any errors in the object’s metadata.

MsgBox MySample.VerifyResults.TabbedValues

Table 6-9 Sample Class of Objects: Properties (continued)

Property Description/Example
6-30 MetaCube Application Programmer’s Manual

Sample Properties
The accuracy requested for the query determines the sample table from
which MetaCube should extrapolate a result, but the accuracy value itself
bears no absolute statistical relevance. High accuracies prompt MetaCube to
choose the largest available sample tables, low accuracies prompt MetaCube
to choose the smallest available sample tables. If the largest sample table still
does not contain a significant fraction of the total records, the margin of error
will be great even for a query requesting a high accuracy.

The correspondence between accuracy and the sample table chosen depends
on the total number of tables and on the rank of the chosen table’s size as
compared to other sample tables. If there exist five tables sampling the fact
table, MetaCube processes queries requesting an accuracy greater than 80
against the largest sample table, queries requesting an accuracy greater than
60 against the second-largest sample table, queries requesting an accuracy
greater than 40 against the third-largest sample table, and so on. In this
hypothetical example, removing any one of the five sample tables changes
the accuracy offered by each of the four remaining tables to a range of 25
rather than 20. Queries requesting a low accuracy will process more quickly,
as MetaCube can extrapolate results from a smaller table.

A query’s assigned accuracy thus directs how MetaCube processes a query,
but does not reflect the precision of the extrapolated result. For each result,
MetaCube also returns the margin of error. In assigning an error range for
each value in the result set, MetaCube evaluates:

■ the confidence with which it must predict that the actual result lies
within the calculated range, represented by the Confidence property
of the Query object class

■ the size of the chosen sample as compared to the fact table, again
represented by the TableSize property of the Sample and also
FactTable object classes

■ the relative data density for each attribute included as a QueryCat-
egory; that is, the number of values at the lowest level of the
dimensional hierarchy as compared to the level of the specified
attribute
Sample Properties 6-31

Sample Properties
The CellError property and the ErrorVBArray, ErrorSpreadClip, and Fetch-
CellError methods of the MetaCube object class retrieve for each value
presented in the report the associated range of error. Sampling thus involves
three object classes: the Sample object class, which defines the metadata for
the sample table, the Query object class, which defines queries against
sample tables, and the MetaCube object class, which retrieves extrapolated
query results and the associated margin of error.

MetaCube API Exercise 18 incorporates all three object classes into a
procedure that first defines the metadata for a sample, and subsequently
extrapolates results from that sample for a query requesting less than
complete accuracy.

Although this exercise registers a new sample in MetaCube’s metadata, this
change is temporary, as the metadata is not saved, and the Sample object is
abandoned at the close of the procedure. The code for registering a sample in
MetaCube’s metadata is included here only for completeness; most systems,
including the demonstration database, will already feature registered sample
tables, and queries for which estimates are acceptable will automatically be
routed to the appropriate sample table.

For this particular procedure to work, a sample table named SALES_SAMP1
must exist, and the value of the TableSize property must be corrected to
reflect the number of rows in that table.

MetaCube API Exercise 18: Sampling
1 Sub Sampling()

2 'Declare Variables
3 Dim MyMetabase As Object, MySample As Object, _
4 MyQuery As Object, MyMetacube As Object, _
5 MyData As Variant

6 'Connect
7 Set MyMetabase = CreateObject("Metabase")
8 MyMetabase.Connect

9 'Define Metadata for Sample Table
10 Set MySample = _
11 MyMetabase.FactTables.Item("Sales Transactions") _
12 .SAMPLES.Add("Sample", "^Access^", "SALES_SAMP1")
13 Let MySample.TableSize = 4003
14 Let MySample.Valid = True
15 MyMetabase.Save
6-32 MetaCube Application Programmer’s Manual

Sample Properties
16 'Define Query
17 Set MyQuery = MyMetabase.Queries.Add("My New Query")
18 MyQuery.QueryCategories.Add "Brand"
19 MyQuery.QueryItems.Add "Units Sold"
20 Let MyQuery.Confidence = 50
21 Let MyQuery.Accuracy = 5
22 MsgBox MyQuery.SQL 'See query hit sample table

23 'Prepare Worksheet
24 Worksheets.Item("Query Report").Activate
25 Cells.Select
26 Selection.ClearContents

27 'Get Extrapolated Results
28 Set MyMetacube = MyQuery.MetaCubes.Add("Data")
29 Let MyData = MyMetacube.ToVBArray
30 Set ReportRange = ActiveSheet.Range _
31 (ActiveSheet.Cells(1, 1), ActiveSheet.Cells _
32 (MyMetacube.Rows, MyMetacube.Columns + 4))
33 Let ReportRange.Value = MyData

34 'Display Error Just Below Results, Recycle Same Variables
35 Let MyData = MyMetacube.ErrorVBArray
36 Set ReportRange = _
37 ActiveSheet.Range(ActiveSheet.Cells(1, 3), _
38 ActiveSheet.Cells(MyMetacube.Rows, _
39 MyMetacube.Columns + 2))
40 Let ReportRange.Value = MyData
41 ReportRange.EntireColumn.AutoFit 'Sizes columns

42 End Sub

Explanation of MetaCube API Exercise 18

This procedure begins by declaring the standard set of object variables for
connecting to a decision support system, building a query, and defining a
report. An additional object variable, MySample, is declared on line 3 to store
an object of the Sample class.

Lines 10 to 12 instantiate a Sample object, assigning the object itself a name,
“Sample,” and identifying the table that the object represents,
“SALES_SAMP1,” as well as the table-owner or schema to which that table
belongs. Since the demonstration database does not support table-owners,
the table-owner is identified as “^Access^”.
Sample Properties 6-33

Sample Properties
Line 13 assigns a value to the TableSize property, indicating the number of
rows in the table. In the demonstration database, the table SALES_SAMP1
has 4003 rows. Line 14 validates the sample, and line 15 saves the metadata,
registering this description of the sample table in the relational database.

Lines 16 to 19 define a query requesting unit sales by brand, a confidence of
fifty percent, and an accuracy of five. Setting a low accuracy ensures that our
relatively small sample table will be used to process the query. We can
confirm that the query accesses data in our new sample table by reviewing
the SQL displayed in the Message Box created by line 22.

The query executes on line 29, which requests that the data be returned from
the database as an array. The query result is stored in variant, MyData, which
we use to populate a range of cells in lines 29 to 32.

The same variables for storing the data and defining a range are given new
values in the subsequent section, which begins on line 34. This section of code
retrieves the margin of error associated with each value in the query result,
displaying the error in a set of cells offset by two columns from the original
report. Line 35 converts into an array the error calculated for each extrapo-
lated value, returning zeros for non-numeric cells within the report. Lines 37
to 39 define a range in which to display the error, incrementing the starting
and ending positions of the report by two, a seemingly arbitrary number
chosen because the original report includes only two columns and we now
want to add another two columns for the error.

Adding the numbers returned by the ErrorVBArray method to the values
extrapolated for brand sales defines the upper range of MetaCube’s estimate;
subtracting the same numbers returns the lower range of MetaCube’s
estimate. As MetaCube based the calculations of these ranges in part on the
Confidence property of the Query objectwhich in our procedure stores a
value of 50there is at least a fifty percent chance that the precise result lies
within this range. In fact, only one of the eight actual brand values falls
outside the estimated range.
6-34 MetaCube Application Programmer’s Manual

The SampleQualifier Class of Objects
The SampleQualifier Class of Objects
Sample objects can own a single collection of objects, those belonging to the
SampleQualifiers class. Each object of this class stores an index or grant that
the sampling agent executes as separate SQL statements following the
creation of the sample table. Please note that table options appended to the
end of the CREATE statement are stored by the TableOption property of the
Sample object in MetaCube's programming interface.

To instantiate a SampleQualifier object, specify the SQL statement building
an index or granting access privileges and indicate whether that statement
should be displayed as an index or a grant in different tools' interfaces:

MySample.Qualifiers.Add _
("GRANT SELECT ON SAMPLE_TABLE TO USER", "GRANT")

The first argument can be any SQL statement stored as a string. The second
argument is a string that can store one of two values: "GRANT" or "INDEX."
While MetaCube may accept other string values for the second argument,
such values will not be registered correctly with Warehouse Manager and
Agent Administrator, the applications for managing sample tables.

SampleQualifier Properties
Objects of the SampleQualifier class have two properties, the values of which
are assigned upon instantiation. Table 6-10 summarizes these properties.

Table 6-10 SampleQualifier Properties

Property Description/Example

Statement This read-write property stores as a string the SQL statement to be
executed following the creation of a sample table.

Let MySampleQualifier.Statement = _
 "GRANT SELECT ON SAMPLE_TABLE TO USER"

Tag This read-write property stores as a string the type of SQL statement
represented by the Statement property of the SampleQualifier object:

Let MySampleQualifier.Tag = "GRANT"

MetaCube tools understand only two strings, "INDEX" and
"GRANT".
The SampleQualifier Class of Objects 6-35

SampleQualifier Properties
6-36 MetaCube Application Programmer’s Manual

7
Chapter
The Folders Class of Objects
The Folder Class of Objects 7-3
Instantiating a Folder Object 7-4
Folder Properties 7-5
Folder Methods. 7-5
MetaCube API Exercise 19: Saving Queries and Filters to Folders;

Renaming, Opening Queries and Filters from Folders 7-7
Explanation of MetaCube API Exercise 19 7-8

7-2 Meta
Cube Application Programmer’s Manual

This chapter introduces the Folders class of objects, which provides an
interface for storing query and filter definitions. Like UNIX, DOS or
Windows platforms, all of which support hierarchically organized folders or
directories, MetaCube folders can be associated with query and filter objects
as well as with other folder objects. A folder can own query and filter defini-
tions, but a folder can also own other folders.

The Folder Class of Objects
As with all objects, the Folder object simply provides an interface for
MetaCube functionality. The actual definitions of queries and filters continue
to be stored in MetaCube’s metadata tables, but the Folder programming
interface offers developers and users a familiar paradigm for organizing that
information.

Although the idea of folders may be completely familiar to users of most
operating systems, as an object in MetaCube’s OLE library they differ in three
respects from other object classes:

■ The RootFolder object owns the first collection of Folder objects. A
single RootFolder object belongs to each instance of a Metabase
object. You cannot instantiate another RootFolder object.

■ The only collection belonging to a Folder object is another collection
of Folder objects. Because each Folder object can, in turn, own a
collection of Folder objects, the number of collections is unlimited.

■ The level of a collection of Folder objects varies, with some collec-
tions belonging directly to the RootFolder object, and others
removed from the RootFolder object by one or more collections.

As shown in the next section, the Folder class of objects’ varying parentage
complicates the syntax for instantiating an object of this class.
The Folder Class of Objects 7-3

Instantiating a Folder Object
Instantiating a Folder Object
As noted previously, each Metabase object’s root folder owns a collection of
folders, and each folder can in turn can own a collection of folders, and so on.
The syntax for instantiating a Folder object will depend on the parent of the
Folder object:

MyMetabase.RootFolder.Folders.Add “My Objects”
MyMetabase.RootFolder.Folders.Item _

(“My Objects”).Folders.Add “New Filters”
MyMetabase.RootFolder.Folders.Item _

(“My Objects”).Folders.Item _
(“New Filters”).Folders.Add “Time Filters”

Storing instantiations of Folder objects in object variables simplifies the
syntax for creating subfolders or subdirectories, achieving an identical result
with better performance:

Set Level1Folder = MyMetabase.RootFolder.Folders.Add _
(“My Objects”)

Set Level2Folder = Level1Folder.Folders.Add (“New Filters”)
Set Level3Folder = Level2Folder.Folders.Add (“Time Filters”)

Once you have instantiated a folder, users can house saved queries in that
folder, specifying the folder object itself as an argument to save methods for
queries and filters, as documented in Table 3-2 on page 3-12 and “Filter
Methods” on page 8-33.

To eliminate a folder, deploy the collection’s Remove method, identifying the
folder to be removed by name or by index number. To identify the names of
the folders in a particular collection, retrieve the contents of the Names
property of the Folders collection, a ValueList that defaults to a tab-delimited
string. As a collection, Folder objects possess the same properties and
methods as other object collections, which are described in “Object Class
Hierarchies and Collections” on page 1-6.
7-4 MetaCube Application Programmer’s Manual

Folder Properties
Folder Properties
The properties of a Folder object store the name of the folder, and the names
of the queries and filters housed in that folder. Table 7-1 summarizes the
properties of the Folder class of objects.

Folder Methods
The Folder class of objects features two methods, one for renaming queries
associated with a Folder object, and the other for renaming filters associated
with a Folder object. Table 7-2 summarizes the methods of the Folder class of
objects.

Table 7-1 Folder Class of Objects: Properties

Property Description/Example

FilterNames This read-only property stores the names of filters associated
with a folder, an owner, and a group. The owner is the login of
the user who saved those filters. The arguments are the name of
the owner and the name of the group, both as strings. To view the
values of this property, enter a pair of empty double-quotes for
the group argument. A ValueList is returned, which defaults to a
tab-delimited string.

MsgBox MyFolder.FilterNames “MetaDemo”, "Time"

Name Stores the name of the folder.

Let MyFolder.Name = “Glenn”

QueryNames This read-only property stores the names of queries associated
with a folder and an owner. The owner is often the login of the
user who saved the queries. You must specify the name of the
owner as a string argument to this property. Returns a ValueList,
which defaults to a tab-delimited string.

MsgBox MyFolder.QueryNames “MetaDemo”

Table 7-2 Folder Class of Objects: Methods

Property Description/Example

FullPathName Returns a string containing the full path to a Filter object.
Folder Properties 7-5

Folder Methods
MetaCube API Exercise 19 provides an overview of the major object classes,
methods, and properties necessary for creating folders, saving queries and
filters in those folders, renaming filters and queries, and, finally, opening
those objects again.

FullPathName This method returns the full path to a Folder object, which may
be useful when manipulating mandatory filters (which are
typically assigned in MetaCube Secure Warehouse). You must
specify as an argument the name of the Folder object for which a
full path is needed.

UserFolderPath = MyFolder.FullPathName("AnotherFolder”)

RenameFilter Substitutes a new name, group, and/or owner for any one of the
Filter objects housed in that folder. The method requires six
arguments: the first three are the current owner, group, and name
of the filter, the second three are the new owner, group, and name
of the filter.

MyFolder.RenameFilter _
 “informix”, “Product”, “Brand Filter”,_
 “metapub”, “Time”, “Week Filter”

RenameQuery Substitutes a new name and/or a new owner for any one of the
Query objects housed in that filter. The method requires four
arguments: the first two are the current owner and name of the
query, the second two are the new owner and name of the query.

MyQuery.RenameQuery “informix”, “Old Query”, _
 “metapub”, “New Query”

Table 7-2 Folder Class of Objects: Methods

Property Description/Example
7-6 MetaCube Application Programmer’s Manual

Folder Methods
MetaCube API Exercise 19: Saving Queries and Filters to
Folders; Renaming, Opening Queries and Filters from
Folders

1 Sub Folders()

2 'Declare Variables
3 Dim MyMetabase As Object, Level1Folder As Object, _
4 Level2Folder As Object, Level3Folder As Object, _
5 MyQuery As Object, MyFilter As Object, _
6 SavedQuery As Object

7 'Login as MetaDemo
8 Set MyMetabase = CreateObject("Metabase")
9 Let MyMetabase.Login = "MetaDemo"

10 MyMetabase.Connect

11 'Create Folders
12 Set Level1Folder = MyMetabase.RootFolder.Folders.Add _
13 ("Objects Folder")
14 Set Level2Folder = Level1Folder.Folders.Add _
15 ("Filter Objects Folder")
16 Set Level3Folder = Level2Folder.Folders.Add _
17 ("Product Filter Folder")

18 'Define and Save Query
19 Set MyQuery = MyMetabase.Queries.Add("New Query")
20 MyQuery.QueryCategories.Add "Brand"
21 MyQuery.QueryItems.Add "Units Sold"
22 MyQuery.SaveAs "API Query", Level1Folder

23 'Define and Save Filter
24 Set MyFilter = MyQuery.Filters.AddNewFilter _
25 ("Alden Filter")
26 Let MyFilter.Group = "Product"
27 MyFilter.FilterElements.Add _
28 "Brand", "=", "Alden"
29 MyFilter.SaveAs "Alden Filter", Level3Folder

30 'See List of Queries and Filters Saved in Different Folder
31 MsgBox MyMetabase.RootFolder.Folders.Names
32 MsgBox Level1Folder.QueryNames("MetaDemo")
33 MsgBox Level3Folder.FilterNames("MetaDemo", "")

34 'Rename Queries and Filters
35 Level1Folder.RenameQuery _
36 "MetaDemo", "API Query", _
37 "metapub", "Public Query"
38 Level3Folder.RenameFilter _

"MetaDemo", "Product", "Alden Filter", _
39 "metapub", "Product", "Alden Filter"
Folder Methods 7-7

Folder Methods
40 'Display New Contents of Folders: Objects by metapub
41 MsgBox Level1Folder.QueryNames("metapub")
42 MsgBox Level3Folder.FilterNames("metapub", "")

43 'Open Saved Query, Applying Saved Filter
44 Set SavedQuery = _
45 MyMetabase.OpenQuery _
46 ("Public Query", "metapub", Level1Folder)
47 SavedQuery.Filters.AddSaved _
48 "Alden Filter", "metapub", Level3Folder

49 End Sub

Explanation of MetaCube API Exercise 19

The exercise begins by declaring object variables to store Metabase, Query,
Filter, and Folder objects. Two object variables, MyQuery and SavedQuery,
are declared to store Query objects: one defines and saves the original
instance of the Query class of objects, the second stores the definition of that
same query as retrieved from the metadata. Since the original query
definition remains in memory, the second object variable is unnecessary. Two
different object variables are used for clarity, demonstrating explicitly how to
save and open queries in a single procedure.

Lines 7 to 10 instantiate a Metabase object and establish a connection between
MetaCube and the demonstration database. The Login property of the
Metabase object explicitly identifies the user that will later be used as the
default author of all saved queries and filters.

After connection, the procedure creates several folders for storing saved
queries and filters. Each Metabase object owns a RootFolder object, which in
turn owns a collection of Folder objects. Line 12 instantiates a Folder object in
this collection called “Objects Folder.” In turn, line 14 instantiates a Folder
Object owned by the “Object Folder” called “Filter Objects Folder.” Line 16
instantiates a third Folder object as a subdirectory of that “Filter Objects
Folder.” For convenience, each Folder object is assigned to an object variable.
When saving and opening queries and filters, we will refer to the objects
stored in these object variables as arguments to different methods.
7-8 MetaCube Application Programmer’s Manual

Folder Methods
Lines 19 to 21 define a simple query, and line 22 saves the query under the
name “API Query” in the folder titled “Object Folder.” Similarly, lines 24 to
28 define a filter on brands, assigning the filter to a group including other
filters on attributes of the product dimension. Line 29 saves the filter in the
folder titled “Product Filter Folder.” Since we saved the query before
defining the filter, the saved query definition does not include any filters.
When opening the query again, we will have to open the filter as well as
apply that filter to the opened query.

Line 31 displays in a MessageBox the names of the folders in the collection
owned directly by the RootFolder object. Unless folders have been created
previously, only one folder, Objects Folder, belongs to that collection. Line 32
displays the queries within this folder that were saved to the database by the
MetaDemo user. Line 33 identifies the filters saved in this folder by the
MetaDemo user. Passing an empty string as the second argument to this
property includes filters from all groups, regardless of the dimension to
which they belong. All arguments are enclosed in parentheses for these
properties because each property returns values to a MessageBox procedure.

Lines 35 to 37 rename the query saved on line 22, first specifying its original
owner and name and then assigning a new owner, “metapub,” and a new
name, “Public Query,” to the query definition. Switching the owner to
“metapub” renders the query available to all Explorer and MetaCube for
Excel users. Similarly, lines 38 and 39 rename the filter saved on line 29,
assigning a different owner to the filter but otherwise leaving the name and
the group unchanged.

Lines 41 and 42 confirm that the author of both query and filter have
changed, polling the metadata to determine the names of any queries and
filters saved by the “metapub” user to the “Objects Folder” and the “Product
Filter Folder,” respectively. Lines 44 to 48 open the saved query and the saved
filter, even though the original definition remains in memory, simply to
demonstrate the syntax for opening queries and filters. In both cases, the
name under which the definition was saved, the login of the author, and the
folder object housing that definition are specified as arguments. Because the
query definition is returned to an object variable, the arguments for opening
a query are included in parentheses.
Folder Methods 7-9

Folder Methods
7-10 MetaCube Application Programmer’s Manual

8
Chapter
The Query and QueryBack
Classes of Objects and Related
Collections

The Query Class of Objects 8-3

Instantiating a Query Object 8-3
Query Properties 8-4
Query Methods. 8-8

Explanation of MetaCube API Exercise 20 8-14
MetaCube API Exercise 21: Submitting a Query to QueryBack . . 8-15

Explanation of MetaCube API Exercise 21 8-17
Related Constants 8-18
Query Collections 8-18

The QueryCategory Class of Objects 8-20
The SortDirection Property 8-22

The QueryItem Class of Objects 8-23
The FormatString and FormatStrings Properties: An Overview . . 8-25
MetaCube API Exercise 22: Formatting Measures 8-26

Explanation of MetaCube API Exercise 22 8-28

The Filter Class of Objects 8-29
The Collection’s Methods 8-30
Filter Properties 8-32
Filter Methods 8-33

The FilterElement Class of Objects 8-34

The MetaCube Class of Objects. 8-38
Instantiating a MetaCube Object 8-38
General Properties. 8-38
Properties of the Three-Dimensional Virtual Cube. 8-43
Related Numeric Constants 8-48
Sorting: SortDirection and SortColumn Property 8-49
MetaCube API Exercise 23: Sorting 8-49

Explanation of MetaCube API Exercise 23 8-50

8-2 Meta
MetaCube Methods 8-56
The DrillDown Method. 8-60
DrillUp Method 8-62

MetaCube API Exercise 24: Drilling Down 8-63
Explanation of MetaCube API Exercise 24 8-65

MetaCube Collections 8-68

The Summary Class of Objects 8-69

The QueryBackJob Class of Objects 8-71
QueryBackJob Properties 8-72
Related Numeric Constants. 8-74
QueryBackJob Methods 8-75
QueryBackJob Collections 8-76
Cube Application Programmer’s Manual

This chapter explains the Query and QueryBack classes of objects and
their related properties, methods, and collections. The sample exercises
included in the tutorial at the beginning of this reference demonstrate how
you can deploy many of these objects in your own applications.

The Query Class of Objects
Once you have described the tables in your Data Warehouse as multi-dimen-
sional MetaCube objects, you can define queries to retrieve information from
those tables. A query definition refers to the measures, dimension elements,
attributes, and filters defined by previous objects of the same name.

Query definitions that include a measure retrieve transaction-based data,
whereas queries that include only attributes or dimension elements from a
given dimension retrieve data about the relationships within the dimensional
hierarchy. Transaction-based queries must include at least one attribute or
dimension element by which to group transactions. Such queries may in fact
feature an unlimited number of attributes or dimension elements from an
unlimited number of dimensions.

Table 1-2 on page 1-13 summarizes each component of a query’s definition.
Each query belongs to a collection descended from a particular instantiation
of a Metabase object and is defined in terms of the multi-dimensional view
inscribed by a DSS System.

Instantiating a Query Object
To instantiate a Query object, simply add a new instance of the Query class
of objects to a Metabase object’s collection of queries:

MyMetabase.Queries.Add “A Brand-New Query”
The Query Class of Objects 8-3

Query Properties
When instantiating a query you must include the name of the query as an
argument. When Explorer instantiates a new query, the application generates
a generic, sequentially numbered name such as “Untitled1.”

Query Properties
The Query class of objects actually represents a collection of attributes,
measures, filters, and multi-dimensional results. As such, this master object’s
properties and methods allow you to generally characterize and manipulate
collections of attributes, measures, filters, and results as a single entity that
defines the data you want to retrieve from a database and how you want to
summarize, pivot, and present that data.

The data a Query object retrieves is thus defined by the objects within its
various collections, whereas its properties reflect characteristics such as the
performance cost of processing the query, the name of the query and its
author, the availability of the query’s result, and its definition in the metadata
tables. Table 8-1 summarizes the properties of the Query class of objects.

Table 8-1 Query Class of Objects: Properties

Properties Description/Example

Accuracy Long: A number between 1 and 100 indicating the degree of
accuracy with which MetaCube should attempt to process a
query. Any value less than 100 prompts MetaCube to process the
query against a sample table. The range of accuracy requested
for the query directs MetaCube to extrapolate a result from a
larger or smaller sample table, as available, but the accuracy
value itself bears no absolute statistical relevance. Defaults to
100.

MyQuery.Accuracy = 60

For more information about sampling, accuracy, and margins of
error, as well as a complete example, see “The Sample Class of
Objects” on page 6-28.

Author String: Identifies the author of a query; defaults to the name of
the database user provided at login.

MyQuery.Author = "informix"
8-4 MetaCube Application Programmer’s Manual

Query Properties
Confidence Long: A number between 1 and 100 determining the statistical
confidence with which MetaCube will report results extrapo-
lated from sample tables. As the value of this property increases,
the range of error values also increases. For example, MetaCube
may be able to predict with 80 percent confidence that a number
falls between 210 and 230, but can only predict with 50 percent
confidence that the number falls between 215 and 225. Defaults
to 100. The CellError property and the FetchCellError, Error-
VBArray, and ErrorSpreadClip methods of the MetaCube object
class return the margin error for a sampled report. See “The
Sample Class of Objects” on page 6-28 for a more detailed expla-
nation of sampling and extrapolated query results.

MyQuery.Confidence = 50

Cost Long Integer: The relative performance cost of executing this
query, as returned by MetaCube’s optimizer for any valid trans-
actional query before or after execution. This value reflects the
size of the aggregate table, fact table, or sample table chosen by
the MetaCube engine to answer the query. Although this value
generally corresponds to the number of rows in the table, its
scale ultimately depends on how the metadata for those tables
has been defined. Costs are additive; the cost of queries
consisting of multiple SQL statements or SQL statements
accessing multiple fact/aggregate tables is the sum of the costs
of the tables accessed. Read-only.

If MyQuery.Cost > 1000 _
 Then MsgBox "Query may involve delay."

CurrentData Boolean. A true value indicates that MetaCube has executed the
query as currently defined and the result remains resident in
local memory; a false value indicates otherwise. Read-only.

If MyQuery.CurrentData = True _
 Then MsgBox "Query result in memory."

Table 8-1 Query Class of Objects: Properties (continued)

Properties Description/Example
Query Properties 8-5

Query Properties
DataSource String: Stores the name of the data source for which a query is
currently being defined. Please note that this property only
stores information to which an application may refer after
opening a saved query, thereby determining which dimensions
and measures to display. MetaCube neither assigns a default
value to this property nor uses this information in any way when
generating SQL for a query. Properly scoped, each QueryCat-
egory and QueryItem identify the data source from which an
attribute or measure is drawn; see “Scoping Rules” on page 14-3.
Similarly, you can determine the dimensions, dimension
elements, and attributes available for each data source by
referring to the collection of Dimension objects owned by a
particular FactTable object, as documented in “The Dimension
Class of Objects, as Owned by a FactTable Object” on page 6-21.

Let MyQuery.DataSource = “Sales Transactions”

ExecutionTime Date variant: Indicates the length of time required to execute the
query, incremented from 12:00:00 a.m. Null pending execution.
Read-only.

MsgBox MyQuery.ExecutionTime

Folder Object, read-only: Represents the Folder object under which the
Query object has been saved. This property is invalid for Query
objects that have not been saved.

MsgBox MyQuery.Folder.Name

Item-
Orientation

This long constant determines whether the data returned by the
Query object is organized by rows or columns. Table 8-6 on
page 8-22 lists the appropriate constants.

MyQuery.ItemOrientation = OrientationColumn

LastUpdate Date variant: Indicates date and time of query’s most recent
change. Read-only.

MsgBox MyQuery.LastUpdate

Live Boolean: Indicates whether a connection has been established to
execute the query as currently defined. Defaults to True,
requiring a Metabase connection. This property stores a False
value in cases in which the query has been defined off-line. Read-
only.

MsgBox MyQuery.Live

Table 8-1 Query Class of Objects: Properties (continued)

Properties Description/Example
8-6 MetaCube Application Programmer’s Manual

Query Properties
Maximum-
Exceeded

Boolean: Indicates whether the query, upon execution, returned
a number of rows exceeding the maximum allowed by the
Metabase object's MaxTotalFetches property. Defaults to false.

If MyQuery.MaximumExceeded = True _
 Then MsgBox "Too many rows..."

Name String: The query object’s name, which is specified as an
argument upon instantiation. Default property.

MyQuery.Name = "Untitled1"

Parameters Stores as a read-only ValueList all filter parameters undefined for
the query. Parameters previously defined by Agent Adminis-
trator, the application, or the user will not be included in this list.
To review an application that deploys parameters, see MetaCube
API Exercise 20 on page 8-13.

MsgBox = MyQuery.Parameters

Parent Object: The Metabase object.

MsgBox MyQuery.Parent.Name

Saved Boolean: True indicates that the query as currently defined is
saved in the database; false indicates otherwise.

If MyQuery.Saved = False Then MyQuery.Saved

SQL ValueList: Stores the SQL generated by the MetaCube engine for
any valid query, with each SQL statement representing a
separate string in an array of values. For each entity included in
the COMPARE expression of a QueryCategory and for each
different data source included in a query, MetaCube generates a
separate SQL statement, as documented in “Compare” on
page 5-42. See also MetaCube API Exercise 2 on page 2-7.

MsgBox MyQuery.SQL

TimeFiltered Boolean. True indicates that the query includes a filter on time;
false indicates otherwise. Read only.

MsgBox MyQuery.TimeFiltered

Table 8-1 Query Class of Objects: Properties (continued)

Properties Description/Example
Query Properties 8-7

Query Methods
Query Methods
Table 8-2 summarizes the Query object’s methods.

Table 8-2 Query Class of Objects: Methods

Method Description/Example

AsynchLast-
Error

Returns a string containing the exception message generated
when an aynchronous query fails. An asynchronous query is
generated by the AsynchRetrieve method.

MsgBox MyQuery.AsynchLastError

Asynch-
Retrieve

This method explicitly commands MetaCube to transmit the
SQL generated for a query directly to the relational database and
to do so in a separate thread so the query executes asynchro-
nously, freeing the user from waiting for the query’s results.
Except for initiating asynchronous execution, this method
otherwise behaves exactly like Query.Retrieve. If a user is limited
to mandatory QueryBack jobs, the same limitations will apply
when that user attempts to submit an asynchronous query.

Note: Only one asynchronous query per Query object can run at
any given time. While an asynchronous query is running, no
method can change the definition or execution of a Query object.

MyQuery.AsynchRetrieve

Asynch-
RetrieveStatus

This method returns a string showing the status of an
asynchronous query (a query transmitted to the relational
database using Query.AsynchRetrieve). If the asynchronous
query is retrieving rows, this method will return a row count. If
there is no asynchronous query outstanding or an asynchronous
query fails, the returned string is empty. To retrieve a string
containing the last exception message generated when an
asynchronous query fails, use the AsynchLastError method.

MsgBox MyQuery.AsynchRetrieveStatus

CancelAsynch
Retrieve

This method cancels an asynchronous query. Because only one
asynchronous query can execute at any given time, no
arguments are necessary for this method. This method will not
complete until the asynchronous query has stopped executing.

MyQuery.CancelAsynchRetrieve
8-8 MetaCube Application Programmer’s Manual

Query Methods
Clear-
Parameters

This method erases any values a procedure previously assigned
to the parameters included in a query. This method does not
enable the application to bypass or erase parameter values
created in Agent Administrator. Those values always override
parameters assigned by the application.

MyQuery.ClearParameters

GetParameter-
Object

This method returns the QueryCategory included in the filter
definition for a specified parameter. Since the QueryCategory
object’s default property, Category, stores a self-descriptive
string, this method is useful for identifying the attribute for
which values must be supplied to complete the filter. To review
an application that invokes this method, see MetaCube API
Exercise 20 on page 8-13. The method requires one argument, an
index number identifying the parameter for which the Query-
Category object is sought.

MyQuery.GetParameterObject 1

GetParameter-
Operator

This method returns a string containing the operator for an
undefined parameter. Since more than one parameter may be
undefined for a given query, you must identify the undefined
parameter by index number. This method is useful for
precluding users from submitting multiple values for a
parameter using an "=" operator.

MsgBox MyQuery.GetParameterOperator (0)

OpenStorage This method returns a Query object, along with all children and
any data stored as a query result, from an IStorage object. An
IStorage object can store information in almost any location,
including a local file. This method is available only in C++ and
other development environments that directly support the COM
interface. The method accepts one argument, an IStorage object,
which you can initialize according to your custom storage needs.
Once the object has been initialized, the query can be saved in an
IStorage object using the SaveStorage method of the Query class
of objects.

Table 8-2 Query Class of Objects: Methods (continued)

Method Description/Example
Query Methods 8-9

Query Methods
Retrieve This method explicitly commands MetaCube to transmit the
SQL generated for the query directly to the relational database.
Before execution, the query must either consist of one QueryItem
and one QueryCategory, or one or more QueryCategory objects
specifying an attribute from the same dimension. Several
methods of the MetaCube class of objects, including ToVBArray
and ToSpreadClip, can implicitly require query execution,
rendering deployment of this method unnecessary.

MyQuery.Retrieve

Save This method saves the query’s definition in metadata tables on
the relational database under the name and author specified by
the Query object’s corresponding properties. Consequently, no
arguments are required.

MyQuery.Save

SaveAs This method saves the query’s definition in metadata tables on
the relational database under a different name than that specified
by the Query object’s Name property. This method requires you
to specify the query’s name as a string and the folder under
which the query definition will be saved as an object. Two
queries with the same name cannot be saved to a single folder.
For a complete example of saving and opening queries and filters
into and from different folders see MetaCube API Exercise 19 on
page 7-7.

MyQuery.SaveAs "Sales Report", MyMetabase.RootFolder

SaveStorage Saves a Query object as an IStorage object, including all the
children of that query as well as any data associated with the
query. An IStorage object can store information in almost any
location, including a local file. This method is available only in
C++ and other development environments that directly support
the COM interface. The method accepts one argument, an
IStorage object, which you can initialize according to your
custom storage needs.

Table 8-2 Query Class of Objects: Methods (continued)

Method Description/Example
8-10 MetaCube Application Programmer’s Manual

Query Methods
SetParameter This method assigns a value or values to a filter parameter. The
method requires two arguments: the index number of the
parameter, which will depend on the order in which the Filter-
Element object has been instantiated, and the values to be
substituted for that parameter, listed in a single string. The string
should conform to SQL standards, listing values in parentheses,
with each value in single quotes demarcated by a comma, as
shown.

MyQuery.SetParameter 0, “(‘Alden’, ‘Delmore’)”

For a complete example, see MetaCube API Exercise 20 on
page 8-13. Please note that when submitting parameterized
queries to QueryBack, undefined parameters must be stored in
the metadata for future reference by the UNIX process clientexec.
To identify and define parameters in MetaCube’s metadata,
launch Agent Administrator. Parameters defined through Agent
Administrator and registered in MetaCube’s metadata take
precedence over any parameter assignments made by the
SetParameter method.

SetSQL This method replaces an SQL statement generated by
MetaCube’s analytical engine with a string specified as an
argument. As COMPARE expressions or multi-fact table queries
may result in multiple SQL statements for a given query, you
must identify the SQL statement to be replaced by index number,
with the first statement identified by a zero. The method thus
requires two arguments, the index number, an integer, and the
replacement SQL statement, a string.

MyQuery.SetSQL 0, “SELECT…”

Table 8-2 Query Class of Objects: Methods (continued)

Method Description/Example
Query Methods 8-11

Query Methods
The following two exercises describe particularly complex procedures for
submitting queries to the database. The first example, MetaCube API
Exercise 20, demonstrates how to define a query that includes a parame-
terized filter. The second example, MetaCube API Exercise 21 on page 8-15
demonstrates how to submit a query to QueryBack.

Submit This method submits the query to MetaCube’s QueryBack agent
for background processing, instantiating a QueryBackJob object.
Please note that you cannot submit a query for background
processing if any of the filters included in that query have not
been saved.

The Submit method requires four arguments: a string identifying
the name of the QueryBack job; a numeric integer indicating the
query’s priority, as compared to other queries that may be
queued for background processing; the time at which you would
like the server to process the query; and a numeric argument
indicating the frequency with which the query should be re-
executed, if ever. To assign a high priority to a query, specify a
high number as a priority argument. Explorer limits users to a
priority of five, but MetaCube does not. Table 8-3 on page 8-18,
explains the significance of each frequency argument. The
arguments for this method are arranged in the format:

Set MyQueryBackJob = Query.Submit Name (string), _
 Priority (integer), TargetStartTime (date variant), _
 RecurType (integer)

For an example of this method see MetaCube API Exercise 21 on
page 8-15. For a discussion of how to track and retrieve Query-
BackJob results, see “The QueryBackJob Class of Objects” on
page 8-71.

Table 8-2 Query Class of Objects: Methods (continued)

Method Description/Example
8-12 MetaCube Application Programmer’s Manual

Query Methods
MetaCube API Exercise 20: Executing Queries That Include
Parameterized Filters

1 Sub Parameters()

2 'Declare Variables
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyFilter As Object, MyMetacube As Object, _
5 MyData As Variant, Count As Integer, _
6 Parameters As Variant, _
7 ParameterValues As Variant

8 'Connect
9 Set MyMetabase = CreateObject("Metabase")

10 MyMetabase.Connect

11 'Define Query
12 Set MyQuery = MyMetabase.Queries.Add("My New Query")
13 MyQuery.QueryCategories.Add "Brand"
14 MyQuery.QueryItems.Add "Units Sold"

15 'Define Parameterized Filters
16 MyQuery.ClearParameters
17 Set MyFilter = MyQuery.Filters.AddNewFilter _
18 ("Brand & Region Parameters")

19 MyFilter.FilterElements.Add "Brand", "In", _
20 "<<Please enter brands to filter on...>>"

21 MyFilter.FilterElements.Add "Region", "In", _
22 "<<Please enter regions to filter on...>>"

23 MsgBox MyQuery.Parameters 'All undefined parameters
24 Let Parameters = MyQuery.Parameters.ArrayValues
25 'Stores both parameters as array

26 For Count = 0 To UBound(Parameters) 'to # of param.
27 Let ParameterValues = InputBox _
28 (Title:=MyQuery.GetParameterObject(Count), _
29 Prompt:=Parameters(Count))
30 MyQuery.SetParameter Count, ParameterValues
31 Next Count 'Go back and do the next parameter

32 MsgBox MyQuery.Parameters
33 'All parameters defined, nothing to show
Query Methods 8-13

Query Methods
34 'Get Results
35 Worksheets.Item("Query Report").Activate
36 Set MyMetacube = MyQuery.MetaCubes.Add("Data")
37 Let MyData = MyMetacube.ToVBArray
38 Set ReportRange = ActiveSheet.Range _
39 (ActiveSheet.Cells(1, 1),
40 ActiveSheet.Cells _
41 (MyMetacube.Rows, MyMetacube.Columns))
42 Let ReportRange.Value = MyData
43 ReportRange.EntireColumn.AutoFit

44 End Sub

Explanation of MetaCube API Exercise 20

This procedure defines a filter consisting of two constraints, each represented
by a different FilterElement object. The syntax for instantiating those objects
includes three arguments: the name of the attribute from which values are
being selected; the operator; and the values themselves, also called the
operand. In this example, however, parameters appear in place of the
operand, enabling the user to specify different attribute values for the filter at
run-time. A parameter, which can be any string, appears bracketed in a pair
of less-than and greater-than symbols on lines 20 and 22.

The Parameters property of the Query object stores a list of undefined param-
eters, comprised of parameters for which values must be specified prior to
execution of the query. Once a value has been substituted for a parameter,
that parameter is no longer included in the list. The Message Box created on
line 23 thus includes two parameters, whereas the Message Box created on
line 32 displays none, indicating that attribute values have been substituted
for every parameter.

Because the Parameter property of the Query object stores the entirety of
every parameter label included in the ValueList, we can store those param-
eters in an array, as represented by the variant variable Parameters,
subsequently displaying each parameter label as a prompt in a dialog. Lines
26 to 31 iterate through the parameters in the array, displaying in a dialog the
parameter label as a prompt. The title-bar of the dialog displays the name of
the attribute for which parameter values are sought, obtained by the GetPa-
rameterObject method on line 28.
8-14 MetaCube Application Programmer’s Manual

Query Methods
The SetParameter method substitutes the entered value for the parameter.
This method requires two arguments:

■ the index number of the parameter, in this case identified by the loop
counter

■ the SQL syntax for a list of attribute values, as a string variable called
ParameterValues. Acceptable syntax is of the form “(‘Value1’,
‘Value2’,…)”

When generating SQL for a query, MetaCube only retrieves data for the
specified attribute values.

As noted previously, parameters set by an application remain set only as long
as the application maintains a connection to MetaCube. Parameters defined
by an application no longer apply to QueryBack jobs, which require all
parameters to be saved in the metadata through MetaCube’s Agent Admin-
istrator application. There is no programmatic interface for defining
QueryBack parameters.

The following exercise illustrates how to submit a query to QueryBack.
Please note that you must create a configuration for connecting to a server-
side database running MetaCube Agents to execute this procedure.

MetaCube API Exercise 21: Submitting a Query to
QueryBack

1 Option Explicit

2 Sub Submit_QueryBack_Query_Immediately()

3 'Declare Variables
4 Dim MyMetabase As Object, _
5 MyQuery As Object, _
6 MyMetaCube As Object, _
7 MyQueryBackJob As Object, _
8 QBQuery As Object, _
9 QBCube As Object, _

10 ReportRange As Range, _
11 MyData As Variant

12 'Declare Constants
13 Const Priority = 4
14 Const RecurTypeNone = 1
15 Const QueryBackJobStatusPending = 0
16 Const QueryBackJobStatusFinished = 2
Query Methods 8-15

Query Methods
17 'Connect
18 Set MyMetabase = CreateObject("Metabase")
19 MyMetabase.Connect

20 'Build Query
21 Set MyQuery = MyMetabase.Queries.Add("New Query")
22 MyQuery.QueryItems.Add "Units Sold"
23 MyQuery.QueryCategories.Add "Brand"

24 'Add cube to MyQuery's cube collection
25 Set MyMetaCube = MyQuery.MetaCubes.Add("New Cube")
26 Let MyMetaCube.Scratch = False

27 'Submit to QueryBack
28 Set MyQueryBackJob = MyQuery.Submit _
29 (MyQuery.Name, Priority, MyMetabase.CurrentTime, _
30 RecurTypeNone)
31 'Query scheduled to run on the server, as soon as possible

32 'Wait for Query to Finish
33 Check:
34 MyQueryBackJob.RefreshStatus
35 MsgBox Prompt:=MyQueryBackJob.Status, Title:="Job Status"
36 MsgBox "Check the status of the QueryBack job now?"
37 If MyQueryBackJob.Status <> _
38 QueryBackJobStatusFinished Then GoTo Check

39 'Get QueryBackJob, Store Query in QBQuery
40 Set QBQuery = MyQueryBackJob.Retrieve

41 'Cube and Query returned by QueryBack
42 MsgBox QBQuery.MetaCubes.Count
43 Set QBCube = QBQuery.MetaCubes.Item(0)

44 'Format data as an array VB can display, store in variable
45 Let MyData = QBCube.ToVBArray

46 'Clear "Query Report" Worksheet
47 Sheets("Query Report").Activate
48 Cells.Select
49 Selection.ClearContents

50 ‘Excel Code: Defines Range of Cells, Presents Data
51 Worksheets.Item("Query Report").Activate
52 Set ReportRange = _
53 ActiveSheet.Range (ActiveSheet.Cells(1, 1), _
54 ActiveSheet.Cells (QBCube.Rows, QBCube.Columns))
55 Let ReportRange.Value = MyData
56 ReportRange.EntireColumn.AutoFit 'Sizes columns

57 End Sub
8-16 MetaCube Application Programmer’s Manual

Query Methods
Explanation of MetaCube API Exercise 21

This exercise instantiates a Query object as MyQuery and defines it by one
measure and one attribute, Units Sold and Brand, respectively.

Lines 21 to 23 define the query, storing an instance of the Query object in the
object variable in MyQuery. Lines 25 and 26 also instantiate a MetaCube
object and set its scratch property to false, enabling MetaCube to store all
cubes associated with a query when the query is saved or submitted to
QueryBack.

On line 28, we submit the job for background query processing, using the
Submit method of the Query object to instantiate a new QueryBackJob object.
To instantiate the QueryBackJob object, we must specify the name of the job,
the job's priority, the time at which the job should run, and how often the job
should recur.

The name of the QueryBackJob is, in this case, specified using the Name
property of MyQuery, although QueryBackJob names can differ from Query
names. The query has a priority of 4 and is set not to recur. The CurrentTime
property of the Metabase object returns the time from the PC clock,
instructing the QueryBack agent to process the query as soon as possible.

Once the query has been submitted, we must periodically review the job
queue to determine its status. Lines 33 to 38 define a loop that recurs until the
job finishes, using the RefreshStatus method of the QueryBackJob object to
poll the queue.

Line 40 executes once the status of the QueryBackJob indicates that the job
has finished. The Retrieve method returns a new Query object, storing the
new object in a new variable, QBQuery. Line 42 displays a MessageBox
confirming that the new Query object returned by the Retrieve method also
includes a MetaCube object. Line 45 stores this object in the QBCube object
variable. New object variables are declared for both Query and MetaCube
objects to demonstrate that neither object was merely resident in memory
and that the Retrieve method returned genuinely new Query and MetaCube
objects. The rest of the query is displayed in a spreadsheet as before.

For more information about QueryBack jobs, see “The QueryBackJob Class of
Objects” on page 8-71.
Query Methods 8-17

Related Constants
Related Constants
Table 8-3 summarizes the numeric values for the Submit method’s frequency
argument.

Query Collections
The Query object’s collections define the components of a query, as depicted
in Figure 1-1 on page 1-9. Of the four collections, three incorporate references
to MetaCube’s metadata, with QueryCategory objects identifying the
attributes by which a query groups or summarizes transactional data,
QueryItem objects identifying the measures a query retrieves, and Filter
objects identifying the set of constraints to place on the range of data a query
retrieves. MetaCube objects represent ways of organizing, summarizing, and
presenting the data a query retrieves.

Table 8-3 QueryBack Frequency Constants

Frequency MetaCons.bas Constant Name Constant

Once RecurTypeNone 1

Daily RecurTypeDaily 2

Weekly RecurTypeWeekly 3

Monthly RecurTypeMonthly 4

Annually RecurTypeAnnually 5
8-18 MetaCube Application Programmer’s Manual

Query Collections
Table 8-4 summarizes the collections of a Query object.

Table 8-4 Query Class of Objects: Collections

Collections Description/Example

DrillData-
Sources

Consists of the FactTable objects that can be accessed by a query.
A query can access information in different fact tables only if the
data in those fact tables can be grouped by the attributes
currently included in the query. As different QueryCategory
objects incorporate attributes into a query definition, the
MetaCube analysis engine excludes FactTables objects from the
DrillDataSources collection on the basis of the Dimension objects
contained in each FactTable’s DimensionMappings collection.
Applications cannot directly instantiate a new item in this
collection, and no add method is available. This collection is thus
available only for reference. For an overview of the properties of
a given FactTable object within this collection, see Table 6-1 on
page 6-4.

MsgBox MyQuery.DrillDataSources.Item (0).Name

Filters Consists of ad hoc or saved filters that have been applied to the
query's definition. Any ad hoc filters designed for a particular
query exist only within this collection until saved.

MyQuery.Filters.Add "This Week"

MetaCubes Consists of different multi-dimensional representations of a
query result, often referred to as virtual cubes of data. MetaCube
does not, however, store data in a physical cube.

MyQuery.MetaCubes.Add "Break Report"

Query-
Categories

Consists of objects that identify the names of Attribute and/or
DimensionElement objects by which the query groups and
summarizes transactional data in the report.

MyQuery.QueryCategories.Add "Brand"

QueryItems Consists of objects that specify the type of numeric data the
query retrieves; refer to the names of Measure objects.

MyQuery.QueryItems.Add "Units Sold"
Query Collections 8-19

The QueryCategory Class of Objects
The QueryCategory Class of Objects
A QueryCategory object specifies an attribute or expression to include in a
query’s definition. Attribute objects, discussed in “The Attribute Class of
Objects” on page 4-13, describe physical columns in the relational database
storing string values by which transactional data is characterized and
grouped. Organized in dimensions, attributes typically describe different
levels within a hierarchy of increasingly summarized values. From the
collection of available attributes owned by the Metabase object or from the
collections of available attributes owned by the Dimension objects associated
with a fact table, a QueryCategory identifies an Attribute object to apply to a
query. A QueryCategory object can also represent some function performed
on an Attribute object, such as a Bucket or a Comparison function.

To include an attribute in a query’s definition, simply instantiate a QueryCat-
egory object, identifying by name the Attribute object defined as a
component of the Metabase object’s metadata:

MyQuery.QueryCategories.Add "Brand"

The case-sensitive attribute name is stored as a string in the QueryCategory
object’s only unique property, the Category property. Although Explorer
does not allow users to incorporate dimension elements into their queries,
you can also specify a DimensionElement object when instantiating a Query-
Category. To specify a Comparison or Bucket expression as a QueryCategory,
see “Extension Functions as QueryCategory Expressions” on page 5-40.

Table 8-5 QueryCategory Class of Objects: Properties

Properties Description/Example

Category This property stores a string value representing the name of the
attribute or the syntax of the expression that defines groupings
within a query. Assigning a new value to this property alters the
grouping of the query originally specified when the QueryCat-
egory is instantiated. This property is the default property of the
QueryCategory class of objects.

MsgBox MyQueryCategory.Category
8-20 MetaCube Application Programmer’s Manual

The QueryCategory Class of Objects
Name This property stores a label identifying the QueryCategory.
Changing the value of this property leaves the grouping of the
query unaltered but changes the label MetaCube returns when
displaying QueryCategory values. Note that this property is
unlike the Bucket function, which groups and labels values of the
QueryCategory rather than the QueryCategory itself. Until a
new label has been assigned to the QueryCategory, this property
stores the same string value as the Category property.

Let MyQueryCategory.Name = “NewName”

Object This read-only property points to the Attribute object on which a
QueryCategory expression is based. The QueryCategory object
often represents an attribute object, and in such cases this
property points to an object similar to the QueryCategory itself.
But when a QueryCategory object represents a bucket or some
other expression, the Object property points to the Attribute
object to which the syntax of that bucket expression refers. The
Object property of a QueryCategory representing buckets on the
Brand attribute would, for example, point to the Attribute object
for Brand. Please note that this property stores a null value for
expressions based on multiple Attribute objects, such as a
comparison.

MsgBox MyQueryCategory.Object.Name

Orientation This long constant determines whether each of the values
returned by the QueryCategory object will be displayed in
separate rows, columns, or pages. By default, MetaCube displays
such values in the row orientation. Changing the value of this
property after a report has been generated ultimately involves
instantiating a new MetaCube object but does not require the
analysis engine to re-query the database. Table 8-6 on page 8-22
lists the appropriate constants.

MyQueryCategory.Orientation = OrientationColumn

Parent Stores the Query object to which the QueryCategory object
belongs.

MyQueryCategory.Parent.Name

Table 8-5 QueryCategory Class of Objects: Properties (continued)

Properties Description/Example
The QueryCategory Class of Objects 8-21

The SortDirection Property
Table 8-6 summarizes the constants for the QueryCategory object's Orien-
tation property.

The SortDirection Property
Sorts allow you to arrange values within an attribute in alphabetic or reverse-
alphabetic order and to arrange values of a measure in descending or
ascending order of magnitude. For a more detailed explanation of sorts,
consult the MetaCube Explorer User’s Guide.

By default, all attribute values are sorted in ascending, or alphabetic order,
whereas measures are not sorted at all. To sort measures, assign a value to the
SortColumn or SortRow properties of the MetaCube class of objects, identi-
fying the column or row of numeric data on which you want to perform the
sort. See Table 8-17 on page 8-43.

SortDirection This long constant determines whether values of an attribute will
be sorted in ascending (alphabetic) or descending (reverse-
alphabetic) order. Changing the value of this property after a
report has been generated ultimately involves instantiating a
new MetaCube object but does not require the analysis engine to
re-query the database. See Table 8-6 on page 8-22 for a listing of
numeric arguments and their corresponding constants. The
SortRow and SortColumn properties of the MetaCube object
class, which sort columns or rows on the basis of a measure’s
values, over-ride conflicting sorts applied by this property. See
MetaCube API Exercise 23 on page 8-49. Defaults to ascending
order.

MyQueryCategory.SortDirection = SortDirectionDesc

Table 8-6 Constants for the QueryCategory Object Class’s Orientation Property

Orientation MetaCons.bas Constant Name Constant

Rows OrientationRow 1

Columns OrientationColumn 2

Pages OrientationPage 3

Table 8-5 QueryCategory Class of Objects: Properties (continued)

Properties Description/Example
8-22 MetaCube Application Programmer’s Manual

The QueryItem Class of Objects
Table 8-7 summarizes the numeric values for the SortDirection property.

The QueryItem Class of Objects
Just as the QueryCategory object identifies an attribute to apply to a query,
the QueryItem object identifies a measure to apply to a query.

To include a measure in a query’s definition, simply instantiate a QueryItem
object, identifying in the Add method’s argument the precise name of the
Measure object:

MyQuery.QueryItems.Add "Units Sold"

Because you can perform calculations on and apply formats to a measure, the
QueryItem object’s properties are slightly more extensive than the properties
for a QueryCategory object.

The QueryItem object class has several properties, summarized in Table 8-8.

Table 8-7 Numeric Constants for the SortDirection Property

Sort Direction MetaCons.bas Constant Name Constant

No Sort SortDirectionIgnore 0

Ascending Order SortDirectionAsc 1

Descending Order SortDirectionDesc 2

Table 8-8 QueryItem Class of Objects: Properties

Properties Description/Example

FormatString This property stores as a string syntax for formatting numeric
data in the application or control responsible for displaying
query results. See “The FormatString and FormatStrings
Properties: An Overview” on page 8-25.

MyQueryItem.FormatString = “#,##0.00”
The QueryItem Class of Objects 8-23

The QueryItem Class of Objects
The QueryItem object class features no methods, and owns no collections.

Item This property stores a string value representing the name of the
measure or the syntax of the expression that defines a
QueryItem. Assigning a new value to this property alters the
numeric data retrieved by the query originally specified when
the QueryItem is instantiated. This property is the default
property of the QueryItem class of objects.

MsgBox MyQueryItem.Item

Name This property stores a label identifying the QueryItem in a
report. Changing the value of this property leaves the numeric
data of the query unaltered but changes the label MetaCube
returns when displaying the name of the QueryItem. Until a new
label has been assigned to the QueryItem, this property stores
the same string value as the Item property.

Let MyQueryItem.Name = “NewName”

Object This read-only property stores the Measure object on which a
QueryItem expression is based. The QueryItem object often itself
represents a Measure object, and in such cases, this property
stores an object similar to the QueryItem. But when a QueryItem
object represents an expression such as MovingAvg or TopN, the
Object property stores the Measure object to which the syntax of
the expression refers. Please note that this property would store
a null value for expressions based on multiple Measure objects,
although no such expressions currently exist.

MsgBox MyQueryItem.Object.Name

Parent Object: Returns the Query object to which the collection of
QueryItems belongs.

MsgBox MyQueryItem.Parent.Name

Table 8-8 QueryItem Class of Objects: Properties (continued)

Properties Description/Example
8-24 MetaCube Application Programmer’s Manual

The FormatString and FormatStrings Properties: An Overview
The FormatString and FormatStrings Properties: An
Overview
Properties of MetaCube, QueryItem, and Measure object classes are respon-
sible for storing the syntax for formatting numeric data in different display
environments, such as an Excel Spreadsheet or a reporting control. The
FormatStrings property of the MetaCube object class is documented in Table
8-17 on page 8-43, and the FormatString property of the Measure object is
documented in Table 6-8 on page 6-23.

Both the FormatString property of the QueryItem object and the same
property of the Measure object define the syntax for a measure’s formatting,
which the MetaCube engine can store but not interpret or process. An object
control or the application itself, and not MetaCube, ultimately formats the
data, interpreting the formatting syntax stored by MetaCube in MetaCube’s
metadata or, in the case of a QueryItem, in memory. The syntax of the string
will thus vary, depending on the formatting information required by the
object control or by the application to format numeric data.

Although the FormatString property of the QueryItem object class defines
the formatting of a measure as it will be displayed for a particular query, the
same property of the Measure object class assigns a default format to the
measure for all queries. The property of the QueryItem object class can be
assigned prior to running a query, overriding the property of the Measure
object class, set when defining MetaCube’s metadata.

The FormatString properties of the QueryItem and Measure object classes
enable you to define formatting syntax, but the FormatStrings property of the
MetaCube object class returns such syntax in a read-only ValueList,
providing a single, convenient source on which the reporting application or
control can rely for all formatting syntax.

For any given query, the MetaCube object’s FormatStrings property stores
the format for each of the measures included in that query, regardless of
whether that format was assigned when defining a query or defaults from
metadata specifications. The formatting commands are repeated in the
ValueList for each column or row of a given measure appearing in the report,
alternating if necessary with any other measures that may also be included in
the report. An array of formatting syntax organized in the same order as the
columns of numeric data in the report enables you to easily apply different
formats to different measures, even in a report with many columns or rows
of numeric data, as shown in MetaCube API Exercise 22.
The FormatString and FormatStrings Properties: An Overview 8-25

The FormatString and FormatStrings Properties: An Overview
You should thus use:

■ the FormatString property of the Measure object class when defining
default formats for a measure in MetaCube’s metadata

■ the same property of the QueryItem object class when specifying a
different format for the purposes of a single query

■ the FormatStrings property of the MetaCube object to determine the
formats that have ultimately been assigned to all measures included
in a query

The syntax included in the example is Excel-compliant, as is the syntax
displayed in MetaCube Explorer. The pound sign # indicates the places
where a digit may be displayed, a zero 0 indicates places where a zero will
appear if a digit does not exist. Commas typically demarcate every three
decimal places, and periods indicate the position of the decimal point. For
more information consult Microsoft Excel documentation or review the
syntax appearing in the Format Cells dialog, which can be opened by
choosing Cells from the Format menu whenever a worksheet is active.

MetaCube API Exercise 22 incorporates the FormatString and FormatStrings
properties of all three object classes to enable users to review a measure’s
default formatting, as defined in MetaCube’s metadata, and to suggest a new
format. The query includes an attribute as well as two measures organized by
columns, demonstrating the usefulness of the MetaCube object class’s
FormatStrings property in relatively complex queries.

MetaCube API Exercise 22: Formatting Measures
1 Sub Formatting_Measures()
2 'Declare Variables
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyFilter As Object, MyMetacube As Object, _
5 MyData As Variant, ExcelFormat As String, _
6 FormatArray As Variant, Count As Integer
7 Const OrientationColumn = 2
8 'Connect
9 Set MyMetabase = CreateObject("Metabase")

10 MyMetabase.Connect
8-26 MetaCube Application Programmer’s Manual

The FormatString and FormatStrings Properties: An Overview
11 'Define Query
12 Set MyQuery = _
13 MyMetabase.Queries.Add("My New Query")
14 MyQuery.QueryCategories.Add "Region"
15 MyQuery.QueryCategories.Item("Region") _
16 .Orientation = OrientationColumn 'More columns
17 MyQuery.QueryCategories.Add "Brand"
18 MyQuery.QueryItems.Add "Net Profit" 'New format
19 MyQuery.QueryItems.Add "Units Sold" 'Default format

20 'Prompt for new format of Net Profit measure...
21 Let ExcelFormat = InputBox _
22 (Title:="Format Measure Dialog", _
23 Prompt:= _
24 "Profits currently displayed in " _
25 + MyMetabase.FactTables.Item _
26 ("Sales Transactions").Measures.Item _
27 ("Net Profit").FormatString + _
28 " format. Enter a new format for profits:")
29 Let MyQuery.QueryItems.Item _
30 ("Net Profit").FormatString = ExcelFormat
31 'Get Results
32 Worksheets.Item("Query Report").Activate
33 Set MyMetacube = MyQuery.MetaCubes.Add("Data")
34 Let MyData = MyMetacube.ToVBArray
35 Set ReportRange = ActiveSheet.Range _
36 (ActiveSheet.Cells(1, 1), _
37 ActiveSheet.Cells _
38 (MyMetacube.Rows, MyMetacube.Columns))
39 Let ReportRange.Value = MyData
40 ReportRange.EntireColumn.AutoFit 'Size columns

41 'FormatData
42 Let FormatArray = _
43 MyMetacube.FormatStrings.ArrayValues 'Get formats
44 'There's an array value for each measure-column; cycle through…
45 For Count = 1 To UBound(FormatArray)
46 Columns(Count + 1).Select
47 Selection.NumberFormat = FormatArray(Count)
48 Next Count

49 End Sub
The FormatString and FormatStrings Properties: An Overview 8-27

The FormatString and FormatStrings Properties: An Overview
Explanation of MetaCube API Exercise 22

This procedure defines the familiar Brand-Region query, pivoting the Region
attribute to the column orientation, so that the two measures included in the
query, Net Profit and Units Sold appear twice, once for each region.
Depending on the orientation of measures, the FormatStrings property of the
MetaCube object returns an array listing the appropriate formatting for each
column or row in the report, in the order in which the different measures are
displayed in the report.

After defining a simple query, the procedure prompts the user to enter a new
format for the Net Profit measure on lines 20 to 30. Embedded in the prompt
at lines 25 to 27 is the default formatting syntax for the measure, as defined
in MetaCube’s metadata. The FormatString property of the Measure class of
objects can be assigned new values when creating or editing metadata, or, as
shown here.

To avoid an extremely long line of code, the user’s input is stored in a
variable, ExcelFormat, and subsequently assigned to the FormatString
property of the QueryItem representing Net Profit in lines 29 and 30. Please
note that because we assign a new value to the QueryItem’s FormatString
property rather than the Measure object’s FormatString property, the new
format applies only to the query including that QueryItem.

The query subsequently executes, returning the data into a spreadsheet
named “Query Report.” As usual, a spreadsheet of this name must exist
before executing the procedure.

After the query has executed and the data returns to a range within a spread-
sheet, one task remains for the MetaCube engine: to communicate the
formatting for each measure to Excel, where the formatting is ultimately
performed. The FormatArray variable stores an array of formatting syntax,
with a separate string for each column of numeric data in the report,
indicating how that column should be formatted. In this procedure, the
syntax alternates between the new formatting for profits, and the default
formatting for sales. MetaCube generates this array of alternating syntax,
holding the array as a ValueList in MyMetaCube’s FormatStrings property.
8-28 MetaCube Application Programmer’s Manual

The Filter Class of Objects
Since the FormatArray variable contains a separate value for each column in
the report, we can deploy Visual Basic for Application’s Ubound function to
determine the number of values in the array, and thus the number of columns
storing numeric data in the report, as shown on lines 42 and 43. Using a For…
Next loop, the procedure iteratively formats each column. The loop counter,
represented by the variable Count, serves two purposes:

■ Identifying the column to format on line 42

■ Locating a value within the array on line 43. This value contains the
appropriate formatting syntax for the selected column.

The formatting begins with the second column of the report, which actually
contains the first column of numeric data. For this reason, the Count variable
is incremented by one when identifying the column to select.

Please note that the order of instantiation of different QueryCategory objects
determines the order in which MetaCube groups values. If, for example, you
instantiate a QueryCategory identifying the Brand attribute first and one
identifying a Region attribute second, regions will be grouped by brand as
long as those values are either both organized by column or both organized
by row. You can re-arrange this configuration by deploying the MakeFirst
method on an item within the QueryCategories collection.

The Filter Class of Objects
Filters limit the range of data retrieved by a query or incorporated into an
aggregate table. To apply a filter to the data represented by a particular object,
you must either include that filter in the collection of filters owned by that
particular object or identify that filter through one of the object’s properties,
as the case may require.
The Filter Class of Objects 8-29

The Collection’s Methods
The Collection’s Methods
The Filter object collection features its own set of methods, summarized in
Table 8-9.

Table 8-9 Filters Collection: Methods

Method Description/Example

AddDefault This method applies the default filter for a particular dimension
to a query. You can deploy this method only when adding a Filter
object to a collection owned by a query, and you must specify as
an argument the name of the Dimension object for which you are
applying a default filter. Each Dimension object features the
DefaultFilter property, which identifies a particular Filter object
as that dimension's default.

MyQuery.Filters.AddDefault "Time"

AddNewFilter Adds a new filter. You can deploy this method to create a new
filter, either on an ad hoc basis for a particular query or to save
that filter in MetaCube’s metadata. To instantiate a new Filter
object, you must specify its name as an argument to this method.
Once you have created the filter, you can add FilterElement
objects defining the criteria by which the filter limits data.

MyQuery.Filters.AddNewFilter "This Month"

AddSaved This method retrieves the definition of a filter stored in
MetaCube’s metadata tables from a library of filters associated
with a particular folder and applies that filter to the Query object
owning the Filters collection. Although Explorer prevents a user
from deploying others' private filters, this security measure is
artificially imposed by the application, not the programming
interface. Through the programming interface, you can apply
any filter in the DSS System to a query. The AddSaved method
requires three arguments: the name of the saved filter; the name
of the user who originally created the saved filter; and the folder,
as an object, in which the filter is stored. To retrieve a public filter,
specify the user name as "metapub."

MyQuery.Filters.AddSaved "This Month", "MetaDemo", _
 MyMetabase.RootFolder
8-30 MetaCube Application Programmer’s Manual

The Collection’s Methods
CountGroup This method returns as an integer the number of filters
associated with a particular dimension or group. You must
specify as an argument the name of the Dimension object by
which filters are usually grouped. Filters may also be grouped by
a fact table, in which case the group is named after the fact table
(Explorer prefixes fact table groups with the syntax "FactTables").
If the filters were created in a custom application, they may be
grouped using some other logic.

MsgBox MyQuery.Filters.CountGroup “Time”

ItemGroup This method retrieves a Filter object from the subset of filters
associated with a particular dimension or group and identifies
the object within that subset by an index number. This allows
you to specify, for example, the second saved filter associated
with the Time Dimension. You must specify the name of the
Dimension object by which the filters are grouped and the index
number of the particular item within that group.

Set MyFilter = MyQuery.Filters.ItemGroup("Time", 1)

Remove This method stops the application of a filter to a particular query
without deleting the filter definition from the metadata. You
must specify as an argument the index number of the filter
within that group.

MyQueries.Filters.Remove 2

Table 8-9 Filters Collection: Methods (continued)

Method Description/Example
The Collection’s Methods 8-31

Filter Properties
Filter Properties
The Filter object’s properties describe the general characteristics of a filter,
such as its name, its owner, and the dimension with which it is associated. A
Filter object collection of FilterElement objects defines the actual constraint or
criterion by which the filter limits a range of data. Table 8-10 summarizes the
general properties of the Filter object.

Table 8-10 Filter Class of Objects: Properties

Property Description/Example

Enabled Boolean: Setting the value of this property to false precludes
MetaCube from applying the filter to the query result without
excluding the filter from the collection of filters owned by the
Query object. Defaults to true.

MyFilter.Enabled = False

Folder Object, read-only: Represents the Folder object under which the
Filter object has been saved. This property is invalid for Filter
objects that have not been saved.

MsgBox MyFilter.Folder.Name

Group String: Identifies the name of the Dimension object or Fact Table
object by which the filter is grouped. You can also specify a new
grouping, corresponding to either Dimension or Fact Table
names, by which filters are grouped. Although the programming
interface allows you to define a filter constraining values of
measures, attributes and dimension elements from different
dimensions or fact tables, this property associates each Filter
object with a particular dimension or fact table. This association
enables Explorer and other applications to organize filters by
dimension or fact table for display in a user interface.

MyFilter.Group = "Time"

Name String: Identifies the Filter object. The default property.

MsgBox MyFilter.Name

Owner String: This read-only property identifies the name of the user
who owns the filter. Defaults to the user name provided at login.

MsgBox MyFilter.Owner

Parent Object: Query object.

MsgBox MyFilter.Parent.Name
8-32 MetaCube Application Programmer’s Manual

Filter Methods
Filter Methods
The Filter object’s methods save and delete Filter objects. In saving a Filter
object, you store the definition of the filter in metadata tables on the relational
database. In deleting a filter, you destroy the database records storing that
filter’s definition. Table 8-11 summarizes the Filter object’s methods.

Saved Boolean: Indicates whether the definition of the filter changed
since its most recent save. This read-only property returns false
if the filter has changed, true otherwise.

MsgBox MyFilter.Saved

Updatable Boolean. Indicates whether the current user has privileges to edit
the filter. In this release of MetaCube, this property always
returns true.

MsgBox MyFilter.Updatable

Table 8-11 Filter Class of Objects: Methods

Method Description/Example

DeleteFilter This method deletes the metadata storing a filter’s definition in
the relational database, regardless of whether the corresponding
Filter object exists within a collection owned by a Query object or
a Metabase object. When you delete a Filter object, MetaCube not
only no longer recognizes the filter’s existence, the definition of
the filter no longer exists. This method requires no arguments.

MyFilter.DeleteFilter

FullPathName This method returns the full path to a Filter object, which may be
necessary to identify a mandatory filter. Typically mandatory
filters are assigned using MetaCube Secure Warehouse. You
must specify as an argument the name of the Filter object for
which a full path is needed.

UserFilterPath = MyFilter.FullPathName("UserFilter”)

Table 8-10 Filter Class of Objects: Properties (continued)

Property Description/Example
Filter Methods 8-33

The FilterElement Class of Objects
The FilterElement Class of Objects
A filter consists of one or more criteria limiting the range of a data set in a
report or an aggregate. The criteria defining a filter are represented as a
collection of FilterElement objects owned by the corresponding Filter object.
Just as filters can be applied to a query or to an aggregate, so a FilterElement
object can be applied directly to a measure as a constraint. For an explanation
of measure constraints, which preclude a calculated measure from
performing operations like division by zero, see “The Measure Class of
Objects” on page 6-21. For an introduction to aggregate filters, see Table 6-3
on page 6-9. We will concern ourselves chiefly with FilterElements as they
limit the data returned by a query.

Save This method saves the definition of an existing filter in metadata
tables on the relational database. The filter is saved under its
previous name, folder, owner, and group. To change any of these
values, deploy the RenameFilter method of the Folder object
class. To create a copy of a Filter with a new name, folder, or
group, deploy the SaveAs method of the Filter object class. Both
methods are illustrated in MetaCube API Exercise 19 on
page 7-7.

MyFilter.Save

SaveAs This method saves a new Filter object or saves an existing Filter
object under a new name or in a different folder. Before saving
the filter, the group to which the filter belongs must be specified
by assigning a value to the Group property of the Filter object.
For this method, the name of the filter is specified as a string
argument, and the folder into which the definition should be
stored as an object:

MyFilter.SaveAs "My Brands", MyMetabase.RootFolder

See MetaCube API Exercise 19 on page 7-7 for an example of an
application involving this method.

Table 8-11 Filter Class of Objects: Methods (continued)

Method Description/Example
8-34 MetaCube Application Programmer’s Manual

The FilterElement Class of Objects
Each FilterElement object identifies values within a measure, attribute, or
dimension element to include or exclude from a report. A criterion may, for
example, include the “East” value of the Region attribute, such that a query
can retrieve only transactions associated with that region. Please note that
your query definition need not group transactions by the Region attribute to
apply a filter on the Region attribute against that query.

In the previous example, we defined a constraint that chose all transactions
for which the Region attribute equaled “East.” You can also define constraints
incorporating more sophisticated operators, such as <, >,<>, <=, >=, like, in,
and not null. For the numerical values of a measure or a dimension element
these operators can perform functions like including only sales greater than
$1,000, or stores with codes less than 800.

The less than and greater than operators can also apply alphabetically to the
string values of an attribute, with a “less than” operator corresponding to
earlier in an alphabetic list of values and a “greater than” operator corre-
sponding to later in the alphabetic list of string values. The “In” operator
enables you to include multiple, explicitly-identified values in a constraint,
such as the “East” region and the “West” region. The “Like” operator
includes all values containing a set of letters or digits, with the “%” symbol
demarcating either end of the set. MetaCube also supports such operators as
like, in, not null, etc.

Because MetaCube recognizes the date of the most recent transactions stored
in the Data Warehouse, you can define dynamic, time-dependent filters,
which include different values depending on which values in the Data
Warehouse are most recent. For example, you can limit data to the most
recent three weeks of transactions or to transactions for this month and the
same month last year.

Rather than specifying a value of the attribute or dimension element on
which you are filtering, you must specify one of the following dynamic
parameters: Current Period, Last N Periods (where N can be any integer),
Current Period and Same Period Last Year, or Same Period Last Year. The
duration of the period corresponds to the type of time attribute or dimension
element on which you are filtering, be it Day, Week, Month, Quarter, etc.
When specifying a parameter, you must always enclose the parameter in
brackets, so that MetaCube does not mistake the parameter for an actual
value, such as “<<Current Period>>” or “<<Last 4 Periods>>.”
The FilterElement Class of Objects 8-35

The FilterElement Class of Objects
Although a properly configured MetaCube system can recognize such
common relative-time parameters, you can also create new parameters,
prompting users to enter the values to be substituted for these parameters
immediately prior to execution of the query. Such parameters can be assigned
any label, as long you bracket that label within less-than and greater-than
operators. It is convenient to label the parameter such that it may subse-
quently be offered as a prompt in a dialog requesting the values of the
parameter. See MetaCube API Exercise 20 on page 8-13.

Different properties of the FilterElement object identify each component of a
constraint. Table 8-12 summarizes the properties of the FilterElement object.

Table 8-12 FilterElement Class of Objects: Properties

Property Description/Example

FilterOn String. Identifies the name of the attribute, dimension element,
or measure from which the values are to be selected in the
constraint.

MyFilterElement.FilterOn = "Week"

FilterType Long, read-only: Indicates whether the FilterElement is based
on an attribute, measure, or dimension element object. For the
correspondence between the numeric value stored by the
property and the filter type, see Table 8-13 on page 8-37.

If MyFilter.FilterType = FilterTypeStandard Then MsgBox _
 "Attribute-based filter"

Object Object: Represents the attribute, measure, or dimension element
object on which the FilterElement object is based.

MsgBox MyFilterElement.Object.Name

Operand String: Identifies the particular values within the attribute,
dimension element, or measure on which to perform an
operation for the constraint. Parameters should be enclosed in
less-than and greater-than operators, as described above.

MyFilterElement.Operand = "<<Current Period>>"
8-36 MetaCube Application Programmer’s Manual

The FilterElement Class of Objects
To instantiate a FilterElement object, you must specify as arguments values
for the FilterOn, Operator, and Operand properties:

MyFilter.FilterElements.Add "Brand", "In", "('Alden',
'Delmore')"

The FilterElement object does not feature any properties, nor does it own any
collections.

Table 8-13 summarizes constants stored by the FilterType property of the
FilterElement object:

Operator String: The operator within the constraint definition. Any
operator that can be included in the WHERE clause of an SQL
statement is acceptable, including the following: =, <, >,<>, <=,
>=, in, not in, like, not like, is null, and is not null. The signifi-
cance of these operators when applied to numeric and string
information is explained above. The In operator requires
Operand values to be enclosed in parentheses, and separated by
commas, as shown in the example for instantiating a Filter-
Element object.

MyFilterElement.Operator = "="

Parent Object. Filter object.

MsgBox MyFilterElement.Parent.Name

Table 8-13 FilterType Constants

Filter Element Type MetaCons.bas Constant Name Constant

Other FilterTypeOther 0

Attribute FilterTypeStandard 1

Dimension Element FilterTypeDimensionElement 2

Measure FilterTypeMeasure 3

Table 8-12 FilterElement Class of Objects: Properties

Property Description/Example
The FilterElement Class of Objects 8-37

The MetaCube Class of Objects
The MetaCube Class of Objects
A MetaCube object can best be thought of as a virtual cube of data, as
returned by a Query object. Throughout our discussion of the MetaCube
object, we will refer to the object as if it actually stores data in a physical cube-
like structure. In actuality, MetaCube avoids the expansion problems and
lack of sparsity associated with storing data in this format while continuing
to handle data as though it were.

Each MetaCube object within the collection owned by a query represents a
different way of organizing, summarizing, and pivoting data. The data from
a given query, for example, can be presented in a break report, a cross-tabular
report, or even organized on different pages with results sub-totaled or
averaged. Each new format or calculation manipulates the same set of data
returned to the client, and each corresponds to a different MetaCube object
within a Query object’s collection.

Instantiating a MetaCube Object
Although a MetaCube object ultimately represents the structure storing and
manipulating the data returned by a query, you can instantiate a MetaCube
object before the query executes, including the name of the object as the only
arguments to the Query object’s Add method:

MyQuery.MetaCubes.Add "My Cube of Data"

Please note that if you add multiple instances of a MetaCube object to a
collection owned by a single query, the query does not return a separate data
set for each MetaCube object. Rather, each instance organizes and manipu-
lates a common set of data in a different way.

General Properties
A standard set of MetaCube object properties describe the MetaCube object
generally, identifying the name of the object and its parent. Included in this
set are Boolean properties that indicate whether the analytical engine
performs grand total calculations on the report represented by the object and
whether duplicate values are displayed in break reports.
8-38 MetaCube Application Programmer’s Manual

General Properties
As an object representing a virtual three-dimensional data structure defined
by columns, rows, and pages, the MetaCube object also features properties
that:

■ describe a particular three-dimensional location within a cube

■ retrieve information about a particular cell within the cube

■ describe the general three-dimensional structure of a cube

For example, before determining the value of a cell using the Cell property,
you must identify the location of the Cell using the Column, Row, and Page
properties.

Please note that any MetaCube property or method representing or returning
a value that depends on the nature of the data to be retrieved by the query
can force the query to execute before or even without deploying that Query
object’s Retrieve method. The Rows, Columns, Pages, Cell, and CellType
properties, as well as the FetchCell, FetchCellType, ToSpreadClip, and
ToVBArray methods, all implicitly require a query to execute. Once a query
has executed, however, none of these methods require the query to re-
execute. For an example of an application that relies on a method of the
MetaCube object class to execute a query, see MetaCube API Exercise 3 on
page 2-11.

Table 8-14 MetaCube Class of Objects: General Properties

Property Description/Example

Name String: The name of the MetaCube object, as specified upon
instantiation. Default property.

MsgBox MyMetaCube.Name

Parent Object: Stores the Query object.

MsgBox MyMetaCube.Parent.Name

Scratch Boolean: False indicates that the report definition, as repre-
sented by the MetaCube object, will be saved with the query
definition. The default value, True, indicates that the format of a
query’s report, including pivoting, subtotals, and sorts will not
be saved with the query’s definition.

MyMetaCube.Scratch = False
General Properties 8-39

General Properties
Table 8-15 displays the results of a query with the SuppressDuplicates
property of the MetaCube object set to false

Suppress-
Duplicates

Boolean. In a report including rows and sub-rows or columns
and sub-columns, the values in a row or a column group values
in sub-rows or sub-columns. If you want the row or column
values duplicated for each value within the sub-row or sub-
column, set the SuppressDuplicates property to false. See Table
8-15 on page 8-41 and Table 8-16 on page 8-42. To suppress the
duplicate values in grouping rows or columns, set this property
to true. Defaults to False.

MyMetaCube.SuppressDuplicates = True

Table 8-14 MetaCube Class of Objects: General Properties

Property Description/Example
8-40 MetaCube Application Programmer’s Manual

General Properties
.

Table 8-15 Brand, Region Query, Suppress Duplicates Property False

Brand Region Units Sold

Alden Northeast 1811

Alden West 2626

Barton Northeast 1314

Barton West 1924

Delmore Northeast 1778

Delmore West 2557

Extreme Northeast 433

Extreme West 649

Lasertech Northeast 1105

Lasertech West 1665

NVD Northeast 2719

NVD West 3788

Onetron Northeast 910

Onetron West 1254

Suresound Northeast 2548

Suresound West 3464

Techno Components Northeast 3699

Techno Components West 5286
General Properties 8-41

General Properties
Table 8-16 displays the results of a query in which the SuppressDuplicates
property of the MetaCube object has been set to True.

Table 8-16 Brand, Region Query, Suppress Duplicates Property True

Brand Region Units Sold

Alden Northeast 1811

West 2626

Barton Northeast 1314

West 1924

Delmore Northeast 1778

West 2557

Extreme Northeast 433

West 649

Lasertech Northeast 1105

West 1665

NVD Northeast 2719

West 3788

Onetron Northeast 910

West 1254

Suresound Northeast 2548

West 3464

Techno Components Northeast 3699

West 5286
8-42 MetaCube Application Programmer’s Manual

Properties of the Three-Dimensional Virtual Cube
Properties of the Three-Dimensional Virtual Cube
Table 8-17 summarizes the properties describing three-dimensional charac-
teristics of the MetaCube object.

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties

Property Description/Example

Cell Variant: Returns the value of a cell within the MetaCube object’s
virtual cube of data. The particular cell is specified by a set of
Row, Column, and Page properties. This property represents the
same value retrieved by the MetaCube object’s FetchCell
method. Either the property or the method can implicitly
require a query to execute, if necessary. Read-only.

MsgBox MyMetaCube.Cell

CellError Double: For query results extrapolated from a sample table, this
property stores the range of error associated with the value of a
particular cell. The range varies directly with the confidence
with which MetaCube is required to certify that the actual result
will fall within that range. As with the Cell property, the
particular cell for which MetaCube evaluates the error is
specified by a set of Row, Column, and Page properties. This
property represents the same value retrieved by the MetaCube
object’s FetchCellError method. For a complete discussion of
sampling, see “The Sample Class of Objects” on page 6-28. This
property is read-only.

MsgBox MyMetaCube.CellError

CellType Integer: Identifies the type of data in a specified cell. Different
integer values correspond to an attribute/dimension element
value, a measure value, a subtotal or grand total value, an
attribute/dimension element label, a measure label, or a
subtotal or grand total label. Table 8-18 on page 8-48 summa-
rizes the significance of each cell type code. This property is
read-only, as the type of each cell depends on the definition of
the query and the format of the report.

MsgBox MyMetaCube.CellType

Column Long integer: identifies a particular column in the virtual cube
of data. Defaults to 0.

MyMetaCube.Column = 1
Properties of the Three-Dimensional Virtual Cube 8-43

Properties of the Three-Dimensional Virtual Cube
Columns Long integer: Returns the number of columns in the virtual cube
of data represented by the MetaCube object. See the tutorial
application developed in the second chapter of this reference,
which defines a range of cells in which to display a result using
the MetaCube object’s Columns and Rows properties. The
number of columns in a virtual cube of data depends on the
number of attributes, measures, and dimension elements
included in a query and the range of values each represents. This
property is thus read-only.

MsgBox MyMetaCube.Columns

Current-
Attribute

QueryCategory object: Represents the attribute/dimension
element to which the currently selected or identified
attribute/dimension value belongs.

MsgBox MyMetaCube.CurrentAttribute.Name

FormatStrings ValueList. An array of formatting commands for each numeric
column or row in the query, as set by the FormatString property
of the QueryItem and Measure object classes. See “The SortDi-
rection Property” on page 8-22.

MsgBox MyMetaCube.FormatStrings

Page Long integer: Identifies a particular page in the virtual cube of
data. Defaults to 0.

MyMetaCube.Page = 1

PageLabels ValueList. This property stores the names of attribute values
appearing in the page orientation for a given page, as defined by
the Page property of the MetaCube object. The ValueList will
contain multiple values only if more than one QueryCategory
has been pivoted to a page orientation.

MsgBox MyMetaCube.PageLabels.TabbedValues

Pages Long integer: Represents the number of pages in the virtual cube
of data represented by the MetaCube object.

MsgBox MyMetaCube.Pages

Row Long integer: Identifies a particular row in the virtual cube of
data represented by the MetaCube object. Defaults to 0.

MyMetacube.Row = 1

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties (continued)

Property Description/Example
8-44 MetaCube Application Programmer’s Manual

Properties of the Three-Dimensional Virtual Cube
Rows Long integer: Returns the number of rows in the virtual cube of
data represented by the MetaCube object. The number of rows
depends on the definition of the query and the number of
records retrieved by the query. This property is thus read-only.

MsgBox MyMetaCube.Rows

SortColumn Long: Indicates the column of numeric data on which to perform
a sort, organizing rows according to the numeric value of the
measure appearing in each row. Columns are numbered from
left to right, beginning with zero at the first column in the report.
Pivoting measures to the row orientation does not alter the role
of this property. Using this property to identify a column of
attribute values returns an error. Assigning a value to this
property overrides any sort applied to a QueryCategory
organized by rows, as this method sorts rows based on the
values of a measure rather than the values of an attribute. And
unlike the QueryCategory object’s SortDirection property,
which sorts attribute values regardless of their position in the
report, this property offers developers a powerful way to apply
a new sort to an arbitrary numeric column within an existing
report. Specifying the column on which to base a sort of rows
prior to processing the query can be difficult, as the order in
which columns appear depends on the query result. Defaults to
-1, directing MetaCube to sort reports based on the SortDirection
properties of the Query object’s collection of QueryCategories,
as documented in “The SortDirection Property” on page 8-22.
See also MetaCube API Exercise 23 on page 8-49. In cases where
MetaCube sorts numeric data on rows and on columns before
the query executes, rows are sorted first.

Let MyMetaCube.SortColumn = 2

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties (continued)

Property Description/Example
Properties of the Three-Dimensional Virtual Cube 8-45

Properties of the Three-Dimensional Virtual Cube
SortColumn-
Breaks

Boolean: Indicates how to sort reports in which more than one
QueryCategory object has a row orientation. A true value directs
MetaCube to perform a numeric sort only on sub-rows, leaving
rows unsorted. In this case, only the rows within each break are
sorted from small to large numbers or vice-versa. A false value
directs MetaCube to sort the entire report so that the smallest
numbers appears first and the largest last or vice-versa,
regardless of the break to which a sub-row belongs. Defaults to
false. For examples, see Table 8-21 on page 8-54.

Let MyMetaCube.SortColumnBreaks = True

SortColumn-
Direction

Long: Indicates the direction in which the column specified by
the SortColumn property is sorted, with an ascending sort
arranging numbers such that the largest numbers appear at the
bottom of the report, and the smallest numbers at the top.
Defaults to ascending order. See Table 8-7 on page 8-23 for a list
of constants declarations, their significance, and their corre-
sponding numeric values.

MyMetaCube.SortColumnDirection = SortDirectionDesc

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties (continued)

Property Description/Example
8-46 MetaCube Application Programmer’s Manual

Properties of the Three-Dimensional Virtual Cube
SortRow Long: Indicates the row of numeric data on which to perform a
sort, organizing columns according to the numeric value of the
measure appearing in each column. Rows are numbered from
top to bottom, beginning with zero at the first row in the report.
Using this property to identify a row of attribute values returns
an error. Assigning a value to this property overrides any sort
applied to a QueryCategory organized by columns, as this
method sorts columns based on the values of a measure rather
than the values of an attribute. Since QueryCategories are
sorted before numeric data, changing the sort on a QueryCat-
egory object organized by rows obviously changes the values
that appear in any given row specified by this property. Like the
SortColumn property of the MetaCube object, this property
offers developers a powerful way to apply a new sort to an
existing report. Specifying the row on which to base a sort of
columns prior to processing the query can be difficult, as the
order in which rows appear depends on the query result.
Defaults to -1, directing MetaCube to sort reports based on the
SortDirection properties of the Query object’s collection of
QueryCategories, as documented in “The SortDirection
Property” on page 8-22. See also MetaCube API Exercise 23 on
page 8-49. In cases where MetaCube sorts numeric data on rows
and on columns before the query executes, rows are sorted first.

Let MyMetaCube.SortRow = 2

SortRow-
Breaks

Boolean: Indicates how to sort reports in which more than one
QueryCategory object has a column orientation. A true value
directs MetaCube to perform a numeric sort only on sub-
columns, leaving columns unsorted. In this case, only the
columns within each break are sorted from small to large
numbers or vice-versa. A false value directs MetaCube to sort
the entire report so that the smallest numbers appears first and
the largest last or vice-versa, regardless of the break to which a
sub-column belongs. Defaults to false. For examples, see Table
8-21 on page 8-54.

MyMetaCube.SortRowBreaks = True

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties (continued)

Property Description/Example
Properties of the Three-Dimensional Virtual Cube 8-47

Related Numeric Constants
Related Numeric Constants
Table 8-18 explains the numeric values returned by the CellType property
and their associated constants.

SortRow-
Direction

Long: Indicates the direction in which the row specified by the
SortRow property is sorted, with an ascending sort arranging
numbers such that the largest numbers appear in columns at the
right of the report and the smallest numbers in columns at the
left. Defaults to ascending order. See Table 8-7 on page 8-23 for a
list of constants declarations, their significance, and their corre-
sponding numeric values.

MyMetaCube.SortRowDirection = SortDirectionDesc

Value Variant: Returns the value of a specified cell. This property is
identical to the Cell property but included for compatibility with
Visual Basic controls.

MsgBox MyMetaCube.Value

Table 8-18 MetaCube Class of Objects: Numeric Values for The CellType Property

Cell Contents MetaCons.bas Constant Name Constant

Empty CellTypeEmpty 0

QueryCategory name CellTypeCategoryLabel 1

QueryCategory value CellTypeCategoryValue 2

Label for column or row containing
calculated information

CellTypeSummaryLabel 3

Calculated data, such as subtotals or
grand totals

CellTypeSummaryValue 4

Measure name CellTypeQueryItemLabel 5

Numeric measure value CellTypeQueryItemValue 6

Table 8-17 MetaCube Class of Objects: Properties for Identifying Cells
in a Virtual Three-Dimensional Space and Sort-Related Properties (continued)

Property Description/Example
8-48 MetaCube Application Programmer’s Manual

Sorting: SortDirection and SortColumn Property
Sorting: SortDirection and SortColumn Property
Sorting a standard query in different ways and iteratively executing reports
demonstrates MetaCube’s complex sorting features, as shown in MetaCube
API Exercise 23. Before executing the procedures in this exercise, you must
create three spreadsheets, named “Sort on Brand,” Sort on Measure,” and
“Sort on Brand Again” because the Sort procedure attempts to create reports
in sheets with these names.

MetaCube API Exercise 23: Sorting
1 Sub Sorting()

2 'Declare Variables and Constants
3 Dim MyMetabase As Object, MyQuery As Object, _
4 MyMetaCube As Object, MyData As Variant
5 Const OrientationColumn = 2
6 Const SortDirectionDesc = 2

7 'Login
8 Set MyMetabase = CreateObject("Metabase")
9 MyMetabase.Connect

10 'Define Query
11 Set MyQuery = MyMetabase.Queries.Add("Untitled1")
12 MyQuery.QueryCategories.Add "Brand"
13 MyQuery.QueryCategories.Add "Region"
14 MyQuery.QueryCategories.Item("Region").Orientation _
15 = OrientationColumn
16 MyQuery.QueryItems.Add "Units Sold"

17 'Sort on Brand
18 MyQuery.QueryCategories.Item("Brand").SortDirection _
19 = SortDirectionDesc
20 'Build Initial Report
21 Set MyMetaCube = MyQuery.MetaCubes.Add("Report1")
22 Worksheets.Item("Sort on Brand").Activate
23 RunQuery MyMetaCube 'Calls a procedure for executing query

24 'Resort
25 MyMetaCube.SortColumnDirection = SortDirectionDesc
26 MyMetaCube.SortColumn = 1
27 'Rebuild Report
28 Worksheets.Item("Sort on Measure").Activate
29 RunQuery MyMetaCube
Sorting: SortDirection and SortColumn Property 8-49

Sorting: SortDirection and SortColumn Property
30 'It Was No Fluke: Resort on Brand
31 MyQuery.QueryCategories.Item("Brand").SortDirection _
32 = SortDirectionDesc
33 'Rebuild Report Again
34 Worksheets.Item("Sort on Brand Again").Activate
35 RunQuery MyMetaCube 'No effect: SortColumn overrides!

36 End Sub

37 Sub RunQuery(MyMetaCube)

38 'Declare Variables
39 Dim ReportRange As Range, MyData As Variant

40 'Transform Data in Cube into VB Array
41 Let MyData = MyMetaCube.ToVBArray

42 'Import Data into Excel Spreadsheet
43 Set ReportRange = _
44 ActiveSheet.Range _
45 (ActiveSheet.Cells(1, 1), _
46 ActiveSheet.Cells _
47 (MyMetaCube.Rows, MyMetaCube.Columns))
48 Let ReportRange.Value = MyData
49 ReportRange.EntireColumn.AutoFit 'Sizes columns

50 End Sub

Explanation of MetaCube API Exercise 23

Unlike previous exercises, this exercise involves a subroutine. The main
procedure, Sorting, defines a query on Brand and Region, pivoting the Region
attribute to the column orientation. The rows of the report are first sorted by
Brand, using the QueryCategory object’s SortDirection property, then sorted
by measure, using the SortColumn property of the MetaCube object. Finally
the sort on Brand is applied again to ascertain whether the order in which the
commands are issued determines which property takes precedence.

Each sort generates a different MetaCube object, all of which are stored by the
object variable MyMetaCube and processed by the subroutine RunQuery,
which begins on line 37. Lines 23, 29, and 35 all call this subroutine. When the
RunQuery subroutine completes, the Sort procedure resumes execution at
the point in the Sort procedure from which the call to that subroutine was
made. Since all variables are declared locally, we must explicitly pass to the
RunQuery subroutine any variables that the subroutine requires, in this case,
the object variable MyMetaCube.
8-50 MetaCube Application Programmer’s Manual

Sorting: SortDirection and SortColumn Property
This exercise generates three reports. In the first report, generated by lines 18
through 22, the SortDirection property of the Brand QueryCategory sorts
brands in a descending order:

As Table 8-19 illustrates, a descending sort on the Brand attribute organizes
the rows of the report such that brands appear in reverse-alphabetic order.
Ordering the same rows by a different criterion, such as the numeric values
within a particular column, abrogates the SortDirection property of the Brand
QueryCategory in lieu of the SortColumn property of the MetaCube object.
Although the SortColumnDirection property stores the same numeric
constant, sorting brands according to how well they sold rather than the
alphabetic order of their names obviously alters the arrangement of rows in
the report.

Table 8-19 Brand Sales by Region, Descending Sort on Brand Names
(SortDirection Property of Brand QueryCategory

Region Northeast West

Brand Units Sold Units Sold

Techno Components 3699 5286

Suresound 2548 3464

Onetron 910 1254

NVD 2719 3788

Lasertech 1105 1665

Extreme 433 649

Delmore 1778 2557

Barton 1314 1924

Alden 1811 2626
Sorting: SortDirection and SortColumn Property 8-51

Sorting: SortDirection and SortColumn Property
In our case, line 26 identifies column one, or, since we count from zero, the
second column from the left, as the column of numeric data on which to base
our sort. As a result, the sort will be based on brands’ sales in the Northeast
rather than the West region. Since both regions manifest the same trend in
brand sales, this distinction is meaningless in this context:

As Table 8-20 indicates, the SortColumn and SortRow properties of the
MetaCube object override any conflicting sorts applied by the SortDirection
property of the QueryCategory object.

MetaCube applies sorts on attribute values first and on numeric data second.
This becomes important when performing sorts that are orthogonal to one
another. Reversing the sort on a QueryCategory organized by columns
changes the column specified by a SortColumn property; in our example,
brands stored in rows would be arranged according to how well they sold in
the West rather than in the Northeast region.

To confirm that the order in which sort commands are issued is immaterial
when two sorts are both applied to columns or both applied to rows, we re-
apply the sort to the Brand QueryCategory on lines 31 and 32. The report
generated by this query is identical to its predecessor, shown as Table 8-20.

Table 8-20 Brand Sales by Region, Descending Sort on Brand Sales in Northeast
(SortColumnProperty of MetaCube Object)

Region Northeast West

Brand Units Sold Units Sold

Techno Components 3699 5286

NVD 2719 3788

Suresound 2548 3464

Alden 1811 2626

Delmore 1778 2557

Barton 1314 1924

Lasertech 1105 1665

Onetron 910 1254

Extreme 433 649
8-52 MetaCube Application Programmer’s Manual

Sorting: SortDirection and SortColumn Property
In the unlikely event that a user specifies values for both the SortColumn
property and the SortRow property of a single MetaCube object, MetaCube
organizes columns first according to the relative values of a measure in a
specified row; MetaCube then re-arranges the order of the rows based on the
relative values of a measure in a specified column. The SortRow property can
thus determine the column on which the sorting of rows is based.

Whenever you perform numeric sorts on reports that organize multiple
QueryCategory objects by either rows or columns, you must also use the
SortColumnBreaks and SortRowBreaks properties to indicate whether
multiple QueryCategories or only one QueryCategory should be affected by
the numeric sort. Table 8-21 on page 8-54 displays the result of a query
executed with the SortColumnBreak property set to false.
Sorting: SortDirection and SortColumn Property 8-53

Sorting: SortDirection and SortColumn Property
Table 8-21 Brand, Query Query: Sort on Numeric Column,
SortColumnBreaks Set to False

Brand Region Units Sold

Extreme Northeast 433

West 649

Onetron Northeast 910

Lasertech Northeast 1105

Onetron West 1254

Barton Northeast 1314

Lasertech West 1665

Delmore Northeast 1778

Alden Northeast 1811

Barton West 1924

Suresound Northeast 2548

Delmore West 2557

Alden West 2626

NVD Northeast 2719

Suresound West 3464

Techno Components Northeast 3699

NVD West 3788

Techno Components West 5286
8-54 MetaCube Application Programmer’s Manual

Sorting: SortDirection and SortColumn Property
With the exception of the Extreme brand, whose sales were uniformly weak
in both regions, the rows of the report in Table 8-21 have been sorted without
concern for displaying each brand's sales contiguously. Compare this to the
report displayed in Table 8-22. Here, the order in which brand names appear
is unaffected by the sort:

The SortRowBreaks property serves the same purpose, determining how
MetaCube performs numeric sorts on reports with multiple QueryCategory
objects organized by columns.

Table 8-22 Brand, Query Query: Sort on Numeric Column,
SortColumnBreaks Set to True

Brand Region Units Sold

Alden Northeast 1811

West 2626

Barton Northeast 1314

West 1924

Delmore Northeast 1778

West 2557

Extreme Northeast 433

West 649

Lasertech Northeast 1105

West 1665

NVD Northeast 2719

West 3788

Onetron Northeast 910

West 1254

Suresound Northeast 2548

West 3464

Techno Components Northeast 3699

West 5286
Sorting: SortDirection and SortColumn Property 8-55

MetaCube Methods
MetaCube Methods
The MetaCube object features a variety of methods to render data in different
formats for different development environments. The MetaCube object’s
methods enable users to easily drill down or drill up to different levels of
detail in a report. Table 8-23 explains the methods of the MetaCube class of
objects.

Table 8-23 MetaCube Class of Objects: Methods

Method Description/Example

AddDrill This method adds a new attribute value on which the analysis
engine drills down or drills up, referring to the current Row,
Column, and Page properties of the MetaCube object to identify
that attribute value in the report.

MyMetaCube.AddDrill

ClearDrills This method removes any previous row, page, or column refer-
ences to cells on which the analysis engine has been set to drill
down or to drill up.

MyMetaCube.ClearDrills

ClearSorts This method abrogates any sort assigned by the SortColumn or
SortRow properties of the MetaCube class of objects. Please note
that this method does not abrogate sorts assigned by the SortDi-
rection property of the QueryCategory class of objects.

MyMetaCube.ClearSorts

Copy This method copies the MetaCube object as a new instance of the
same class, with the same properties, orientations, sorts, and
summaries as the source object. The Scratch property of the new
object is set to true.

Set MetaCopy = MyMetaCube.Copy
8-56 MetaCube Application Programmer’s Manual

MetaCube Methods
DrillDown Returns a new object of the MetaCube object class, implicitly
defining a new query to retrieve detail-level data for a specified
attribute value or set of attribute values. Referring to the row,
column, and page properties of the MetaCube object, the
AddDrill method identifies each value on which the analysis
engine drills. This method requires two arguments, the item
within the collection of DrillDownAttributes to which to drill
from the selected attribute value(s) and a Boolean flag indicating
whether to include in the new report the value(s) on which
MetaCube drilled:

Set DetailCube = MyMetacube.DrillDown _
 (MyMetacube.DrillDownAttributes.Item(0), True)

See MetaCube API Exercise 24 on page 8-63 and the explanation
that follows for a more thorough discussion of drilling down.

DrillUp Returns a new object of the MetaCube object class, implicitly
defining a new query to retrieve summary-level data for a
specified attribute value or set of attribute values. Referring to
the row, column, and page properties of the MetaCube object,
the AddDrill method identifies each value on which the analysis
engine drills. This method requires one argument, the item
within the collection of DrillDownAttributes to which to drill
from the selected attribute value(s):

Set DetailCube = MyMetacube.DrillDown _
 (MyMetacube.DrillDownAttributes.Item(0), True)

See below for a more thorough discussion of drilling up.

Error-
SpreadClip

This method returns as a tab-delimited string the error
associated with a query result that has been extrapolated from a
sample table. Query results extrapolated from sample tables
include a range of error for each numeric value within the result.
Attribute values and other non-numeric cells within the report
return null values. For queries that do not process against a
sample table, the ErrorSpreadClip method returns null values
for all cells. For more information about sampling, query confi-
dence, and error, see “The Sample Class of Objects” on
page 6-28. The ErrorSpreadClip method requires the same
arguments as the more common ToSpreadClip method,
documented below.

Spread1.ClipValue = MyMetaCube.ErrorSpreadClip _
 (1, MyMetaCube.Rows)

Table 8-23 MetaCube Class of Objects: Methods (continued)

Method Description/Example
MetaCube Methods 8-57

MetaCube Methods
ErrorVBArray For each value in an extrapolated query result, this method
returns a margin of error, assembling the error values in a two-
or three-dimensional variant array that can be stored by a Visual
Basic 4.0 or Visual Basic for Applications variant or array
variable. This method returns null values for queries that are not
processed against a sample table. Non-numeric cells in a query
result also return null error values, regardless of the table from
which the result was retrieved or derived. For numeric query
results that are extrapolated from a sample table, the error can
be added or subtracted to that result, defining a range within
which the actual value is likely to fall. The confidence with
which MetaCube is required to certify that the actual result will
fall within that range determines the size of the range. For more
information about sampling, query confidence, and error, see
“The Sample Class of Objects” on page 6-28. The ErrorVBArray
method can implicitly require MetaCube to execute a query.

Dim QueryData as Variant

QueryData = MyMetaCube.ErrorVBArray

FetchCell Like the Cell property, this method returns as a variant the value
of a specific cell within the virtual cube of data represented by a
MetaCube object. You must specify as arguments the row,
column and page number of the desired cell, in that order.
Deploying this method before executing the query implicitly
commands the MetaCube engine to execute the query. Please
note that this method involves building the entire virtual cube
on the client, and limits on the number of rows a query can
retrieve still apply.

MyVariantValue = MyMetaCube.FetchCell (1, 1, 1)

Table 8-23 MetaCube Class of Objects: Methods (continued)

Method Description/Example
8-58 MetaCube Application Programmer’s Manual

MetaCube Methods
FetchCellError Like the CellError property, this method returns a number of the
double type, indicating the error associated with a single value
within an extrapolated query result. This method returns null
values for queries that are not processed against a sample table.
This method also returns null values for cells that are non-
numeric, such as those that contain attribute values. For
numeric query results that are extrapolated from a sample table,
the error can be added or subtracted to the statistically-
predicted value, defining a range within which the actual value
is likely to fall. The confidence with which MetaCube is required
to certify that the actual result will fall within that range deter-
mines the size of the range. For more information about
sampling, query confidence, and error, see “The Sample Class of
Objects” on page 6-28. This method, which can prompt
MetaCube to execute a query, requires three arguments, speci-
fying the row, column, and page number of the desired cell, in
that order.

CellError = MyMetaCube.FetchCellError 1, 1, 1

FetchCellType Like the CellType property, this method returns an integer
indicating the type of data a cell stores, whether it be a measure
label, an attribute label, a measure, a value, etc. Table 8-18 on
page 8-48 explains the significance of the integers returned by
this method. This method requires the same arguments as the
FetchCell method, and they must be specified in the same order.

CellCode = MyMetaCube.FetchCellType(1, 1, 1)

Table 8-23 MetaCube Class of Objects: Methods (continued)

Method Description/Example
MetaCube Methods 8-59

MetaCube Methods
The DrillDown Method

Drilling down enables you to navigate easily from a cell in a report to greater
levels of detail, as displayed in a new report of the same format. The
DrillDown method of the MetaCube object class instantiates, defines and
executes a new Query object identical to the parent of the MetaCube object
except that one of the attributes in the original query is replaced by an
attribute describing a lower level in the dimensional hierarchy.

ToSpreadClip This method translates the data stored in the virtual cube repre-
sented by a MetaCube object into a tab-delimited string, which
you can readily export to the popular Spread/VBX custom
control. Deploying this method before executing the query
implicitly commands the MetaCube engine to execute the query.

Spread1.Col = 1

Spread1.Row = 1

Spread1.Col2 = MyMetaCube.Columns

Spread1.Row2 = MyMetaCube.Rows

Spread1.ClipValue = MyMetaCube.ToSpreadClip _
 (1, MyMetaCube.Rows)

This example includes optional arguments. One specifies the
row within the cube at which to begin exporting data, the other
specifies the number of rows to export, where the default is all
rows. Using these arguments to iteratively specify different
chunks of data allows you to export large data sets to
Spread/VBX.

ToVBArray This method translates the data represented by the MetaCube
object as a virtual cube into a two- or three-dimensional variant
array that can be stored in a Visual Basic 4.0 or Visual Basic for
Applications array or variant variable. This method can
implicitly require MetaCube to execute a query. For an example
of such an application, see MetaCube API Exercise 3 on
page 2-11.

Dim QueryData as Variant

QueryData = MyMetaCube.ToVBArray

Table 8-23 MetaCube Class of Objects: Methods (continued)

Method Description/Example
8-60 MetaCube Application Programmer’s Manual

MetaCube Methods
Moreover, the new Query object includes a filter against the attribute on
which you are drilling, retrieving only values within the range defined by the
cells selected in the original report. If, in a monthly sales report, you drill
down on the value July, the resulting report would be grouped by the
attribute describing the next level of detail within the time dimension, but
only for the month of July—that is, only the days July 1 through July 31.
Using the AddDrill method of the MetaCube object class, you can specify
more than one attribute value on which to drill, expanding the scope of the
new, detail-level report.

The analytical engine generates a new MetaCube object to represent the data
returned by the new query. The new MetaCube object features the same
properties and describes the same report format as the previous MetaCube
object, substituting the detail-level attribute for the summary-level attribute.

You can drill down on only values of a single attribute within the virtual cube
represented by the MetaCube object. For each attribute value you must
identify the cell containing such a value, defining its location in the three-
dimensional virtual cube:

MyMetaCube.Column = 0
MyMetaCube.Row = 1
MyMetaCube.Page = 0

Once you have identified a cell storing an attribute value, you can deploy the
AddDrill method:

MyMetaCube.AddDrill

This method requires no arguments, as the Column, Row, and Page
properties of the MetaCube object already identify the cell on which to drill.
For each value within an attribute on which you want to drill, you must
specify a different cell using these properties, followed by the same AddDrill
method. For a given MetaCube object, you cannot add drill directions for
values of different attributes. Although you cannot view as a collection or
ValueList the cells on which you are drilling, the values on which MetaCube
drills are cumulativethe AddDrill method does not replace one value with
the next. Once you have specified a cell on which to drill, you can exclude
that cell from MetaCube’s drill path only by clearing all drill paths using the
ClearDrills method.

MyMetaCube.ClearDrills
MetaCube Methods 8-61

MetaCube Methods
Before deploying the DrillDown method, you must have identified at least
one cell on which to drill, using the Row, Column and Page properties of the
MetaCube object. The DrillDown method requires two arguments, the
Attribute object to which you would like to drill, specified as an object, and a
flag indicating whether existing attribute values should be included in the
new report. This method returns a new MetaCube, named after the original
MetaCube object, the parent of which is the new Query object. To execute the
query, invoke the ToVBArray or ToSpreadClip method:

Set DetailLevelCube = MyMetaCube.DrillDown _
 (MyMetaCube.DrillDownAttributes.Item(0), True)

MyMetaCube’s collection of DrillDownAttribute objects includes the default
attributes to which you can drill for a specified cell. See Table 8-24 on
page 8-68. You can also specify the attribute on which to drill down by
referring to the collection of attributes owned by a Dimension object.

DrillUp Method

Like the DrillDown method, this method returns a new instance of the
MetaCube object with a new parent; both the Query object and the MetaCube
object are identical to the original Query and MetaCube objects except that
they represent data at a higher level of summarization.

Although the value or set of values from which you drill up in a report
describes a particular level in the dimensional hierarchydefining the
collection of DrillUpAttributesthe resulting query is not filtered on that
value. The new query thus retrieves data at a higher level of summarization
but with the same scope. Since the subsequent query is not filtered on the
selected attribute value(s), it is unnecessary to select more than one cell on
which to drill.

As with the previous method, you must establish the cell from which you are
drilling before deploying this method, using the Row, Column, and Page
properties of the MetaCube object:

MyMetaCube.Row = 1
MyMetaCube.Column = 0
MyMetaCube.Page = 0
MyMetaCube.AddDrill
8-62 MetaCube Application Programmer’s Manual

MetaCube Methods
After specifying a cell on which to drill, deploy the AddDrill method. As with
the DrillDown method, you cannot drill up from values of different
attributes. The attribute values added to the drill path correspond to a
particular level in the dimensional hierarchy, defining the collection of
attributes reachable via the DrillUp method from that cell. We use this
collection to specify the new Attribute object. The DrillUp method substi-
tutes one of the attributes from this collection for the attribute on which you
are drilling up from:

Set DrillUpCube = MyMetaCube.DrillUp _
 (MyMetaCube.DrillUpAttributes.Item(0))

The DrillUp method returns a new MetaCube object named after the original
MetaCube object, the parent of which is the new Query object. To execute the
query, deploy the ToVBArray or ToSpreadClip method.

MetaCube API Exercise 24 illustrates many of the methods and properties
used for drilling down and drilling up. The procedures in this exercise create
a simple break report, with Brand organized by rows and Region by columns,
and then drill down, first on Brand and then on Region.

MetaCube API Exercise 24: Drilling Down
1 Option Explicit

2 Sub DrillDown()

3 'Declare Variables and Constants
4 Dim MyMetabase As Object, MyQuery As Object, _
5 MyMetaCube As Object
6 Const OrientationColumn = 2

7 'Login
8 Set MyMetabase = CreateObject("Metabase")
9 MyMetabase.Connect

10 'Define Query
11 Set MyQuery = MyMetabase.Queries.Add("Untitled1")
12 MyQuery.QueryCategories.Add "Brand"
13 MyQuery.QueryCategories.Add "Region"
14 MyQuery.QueryCategories.Item("Region").Orientation _
15 = OrientationColumn
16 MyQuery.QueryItems.Add "Units Sold"

17 'Build Initial Report
18 Set MyMetaCube = MyQuery.MetaCubes.Add("Report1")
19 Worksheets.Item("Original Report").Activate
MetaCube Methods 8-63

MetaCube Methods
20 'Call Procedure for Executing Query
21 RunQuery MyMetaCube

22 'Drill Down on Two Brands
23 'Add First Drill Value
24 MyMetaCube.Row = 2 'First row has index number of zero
25 MyMetaCube.Column = 0
26 MyMetaCube.Page = 0
27 MyMetaCube.AddDrill

28 'Add Second Drill Value
29 MyMetaCube.Row = 3
30 MyMetaCube.Column = 0
31 MyMetaCube.Page = 0
32 MyMetaCube.AddDrill

33 'Drill Away!
34 Set MyMetaCube = MyQuery.MetaCubes.Item("Report1") _
35 .DrillDown (MyQuery.MetaCubes.Item("Report1") _
36 .DrillDownAttributes.Item(0), _
37 True)
38 MsgBox MyMetaCube.Parent 'Not the original query
39 Worksheets.Item("Drill Down").Activate 'New worksheet

40 'Call Procedure for Executing Query
41 RunQuery MyMetaCube

42 'Drill Down on Region, From the Original Report

43 'Get Rid of Old Drills
44 MyQuery.MetaCubes.Item("Report1").ClearDrills

45 'Add Drill on a Region
46 MyQuery.MetaCubes.Item("Report1").Row = 0
47 MyQuery.MetaCubes.Item("Report1").Column = 1
48 MyQuery.MetaCubes.Item("Report1").Page = 0
49 MyQuery.MetaCubes.Item("Report1").AddDrill

50 'Drill Away!
51 Set MyMetaCube = MyQuery.MetaCubes.Item("Report1") _
52 .DrillDown (MyQuery.MetaCubes.Item("Report1") _
53 .DrillDownAttributes.Item(0), True)
54 Worksheets.Item("DrillDown Again").Activate

55 'Call Procedure for Executing Query
56 RunQuery MyMetaCube

57 End Sub

58 Sub RunQuery(MyMetaCube)

59 'Declare Variables
60 Dim ReportRange As Range, MyData As Variant
8-64 MetaCube Application Programmer’s Manual

MetaCube Methods
61 'Transform Data in Cube into VB Array
62 Let MyData = MyMetaCube.ToVBArray

63 'Import Data into Excel Spreadsheet
64 Set ReportRange = _
65 ActiveSheet.Range _
66 (ActiveSheet.Cells(1, 1), _
67 ActiveSheet.Cells _
68 (MyMetaCube.Rows, MyMetaCube.Columns))
69 Let ReportRange.Value = MyData
70 ReportRange.EntireColumn.AutoFit 'Sizes columns

71 End Sub

Explanation of MetaCube API Exercise 24

Like the previous exercise, this exercise involves two separate procedures.
The first procedure, DrillDown, defines a query and drills down on two
different attributes, instantiating three MetaCube objects to store the result,
all of which are stored in the object variable MyMetaCube. The DrillDown
procedure is the main procedure and begins on line 4.

The second procedure, RunQuery, retrieves as an array the data represented
by the three MetaCube objects defined in the main procedure, displaying that
data in the currently active spreadsheet. This procedure begins on line 61.
The DrillDown procedure calls the RunQuery procedure from lines 21, 41,
and 56. Each call passes the object variable MyMetaCube to the RunQuery
procedure. When the RunQuery procedure completes, the DrillDown
procedure resumes execution at the point from which the call was made. As
a subroutine to the main procedure, RunQuery cannot be executed
independently.

The DrillDown procedure begins by declaring a set of object variables for
storing Metabase, Query, and MetaCube objects. All variables are declared
locally, requiring us to explicitly pass to the second procedure any variables
that the subroutine requires. Line 6 declares a constant that we will later use
to pivot the Region attribute to the column orientation.
MetaCube Methods 8-65

MetaCube Methods
We connect to the database on line 9, instantiating a multi-dimensional view
of relational data in a Metabase object. As in previous exercises, no Metabase
properties are set and connect parameters default from the metacube.ini file.
Lines 12 to 16 define the familiar Brand, Region query, and lines 18-19 instan-
tiate a MetaCube object to represent the report. Although this MetaCube
object will differ from the objects that drilling down subsequently instan-
tiates, the same object variable, MyMetaCube, iteratively stores each of the
three objects.

Before calling the RunQuery subroutine, the main procedure activates a
worksheet, to which the subroutine returns data. With each call to the
subroutine, a different worksheet is active, ensuring that no result overwrites
its predecessor. Prior to running the main DrillDown procedure, you must
have created three worksheets with the names “Original Report,” “Drill
Down,” and “Drill Down Again.”

Line 21 calls the RunQuery subroutine to execute the query, passing the
MetaCube object as an argument to the second procedure, which begins on
line 60.

We now shift our attention to this subroutine. Because the calling application
must pass the object variable MyMetaCube to the RunQuery subroutine, the
MyMetaCube object variable appears in the parentheses following the name
of the procedure.

On line 62, the RunQuery procedure declares two variables, one to store data
from MyMetaCube, the other to define a range of cells in which that data is
displayed. Line 62 prompts MetaCube to retrieve data from the database as
the ToVBArray method returns data as an array to the MyData variant
variable. Lines 64 to 70 define a report range based on the number of rows
and columns in the query result and assign each value in the array to a
different cell in the spreadsheet. At the end of this procedure on line 70, the
DrillDown procedure resumes execution, on line 22.

Using the Row, Column, and Page properties, lines 24 to 26 define a position
within the original MetaCube object’s multi-dimensional structure that
stores an attribute value, in this case the “Alden” brand. Upon specifying a
cell, line 27 invokes the AddDrill method, thereby including that attribute
value in the group of attribute values on which the DrillDown method will
act. In a similar fashion, lines 28 to 32 include a second attribute value,
“Barton,” in this group. The DrillDown method on line 35 thus retrieves
detailed information for two brands, Alden and Barton.
8-66 MetaCube Application Programmer’s Manual

MetaCube Methods
Once the cells on which to drill are set, we can deploy the DrillDown method.
Drilling down instantiates a new MetaCube object with a new parent, a
Query object with characteristics identical to its predecessor’s, except that a
new filter has been applied to include data only for the values being drilled
down on, and a new, lower-level QueryCategory has been included to show
data in more detail.

For efficiency, the MyMetaCube object variable stores the new MetaCube
object, replacing the original MetaCube object. Although the application
itself obviates the original MetaCube object, it is preserved in memory by the
analysis engine as an item within a collection. Immediately we must refer to
this object in line 36, as the original MetaCube object’s collection of
DrillDown attributes determines which attributes are available for inclusion
in the drill down query.

This collection of DrillDown attributes consists of the default attributes for
each dimension element one level below the level of the attribute on which
we drilled. In this case, there is only one dimension element directly below
the level of the Brand attribute, and that dimension element’s default
attribute is Product. We thus specify the first and only item within this
collection as our drill down attribute. The second argument in this statement,
a Boolean flag set to True, directs MetaCube to include the attributes on
which we are drilling in the new drill down report.

Line 38 displays in a MessageBox the parentage of the new MetaCube object,
displaying the generic name of the new Query object generated by the
DrillDown method. After activating a new worksheet, the procedure again
calls the RunQuery subroutine, retrieving data for the MetaCube object as
before.

After executing the new query, the DrillDown procedure resumes on line 44,
using the ClearDrills method to eliminate the attribute values of the previous
query from the drill path. The original MetaCube must be identified as an
item within a collection, as the object variable MyMetaCube now stores the
MetaCube object generated by the first drill down.

Otherwise, this section of code, which is included only to demonstrate that
the original MetaCube object remains in memory, is identical to the previous
section; a position is defined within the multi-dimensional result set of the
original MetaCube object, a drill direction is added, and then MetaCube
drills down from that position to a specified attribute, again preserving in the
new report the value on which the analysis engine drills.
MetaCube Methods 8-67

MetaCube Collections
MetaCube Collections
The objects within the MetaCube object’s collections allow you to perform
different calculations and manipulations on a given set of data without re-
querying the database. Also included as denormalized, read-only collections
of the MetaCube object are collections describing the attributes to which you
can drill up or drill down from different cells within the virtual cube of data
represented by the MetaCube object. The latter collections can really be
thought of as belonging to different cells within a cube, as their content
changes from cell to cell.

Table 8-24 summarizes the MetaCube object’s collections.

Table 8-24 MetaCube Class of Objects: Collections

Collection Description/Example

DrillDown-
Attributes

Consists of a subset of Attribute objects to which you can drill
down from a given cell. The composition of the collection
depends on the cell specified by the Row, Column, and Page
properties of the MetaCube object. The collection thus changes
from cell to cell, as identifying a cell containing a value of an
attribute different than the previous cell changes the collection
of attributes reachable via drill down from that cell. You cannot
directly add or delete Attribute objects to this collection.

DrillUp-
Attributes

Consists of a subset of Attribute objects to which you can drill
up to from a given cell. The composition of the collection
depends on the cell specified by the Row, Column, and Page
properties of the MetaCube object. The collection thus changes
from cell to cell, as identifying a cell containing a value of an
attribute different than the previous cell changes the collection
of attributes reachable via drill up from that cell. You cannot
directly add or delete Attribute objects to this collection.
8-68 MetaCube Application Programmer’s Manual

The Summary Class of Objects
The Summary Class of Objects
For MetaCube objects that represent break reports, the Summary object
performs calculations on the attribute values within a larger grouping,
summing, averaging, or counting their associated records. For weekly sales,
subdivided by state, you can calculate the average state sales for each week,
the total state sales for each, or the number of states for which sales are
recorded each week. To perform any of these calculations, we instantiate a
Summary object, specifying the QueryCategory object representing the Week
attribute as the attribute for which we want to perform the calculations. A
second argument indicates the type of calculation to perform on the values
within each Week grouping:

MyMetaCube.Summaries.Add MyQueryCategory, SummaryTotal

Summaries Consists of objects that subtotal break reports. For example, a
report subdividing brand sales by region could perform a
subtotal on the QueryCategory object representing Brand, calcu-
lating each brand’s total or average sales for all regions and
storing the result in a row interpolated at each Brand value.
Summary objects can also perform grand totals on columns or
rows, as well as minimums, maximums, counts, and averages.
When instantiating a Summary object, you must include as
arguments the QueryCategory object and a constant indicating
the type of calculation to perform on each grouping within the
report.

MyMetaCube.Summaries.Add MyQueryCategory, _
 SummaryTotal

Table 8-24 MetaCube Class of Objects: Collections (continued)

Collection Description/Example
The Summary Class of Objects 8-69

The Summary Class of Objects
The Summary object can also calculate grand totals, averages, counts,
minimums and maximums for all columns or all rows, in which case the first
argument is null, irrespective of the groupings within a break report. Should
we want to perform several different calculations on the same QueryCat-
egory object, we simply instantiate additional Summary objects, specifying a
different type of calculation for each. Each of the arguments in the instanti-
ation command correspond to a Summary object property, as explained in
Table 8-25

Table 8-26 summarizes the constants for the SummaryType property.

Table 8-25 Summary Class of Objects: Properties

Properties Description/Example

Query-
Category

Object: Identifies the QueryCategory object representing the
attribute for which the calculation is to be performed. All sub-
rows within the grouping defined by values of the attribute will
be summed, averaged, or counted.

Set MySummary.QueryCategory = MyQueryCategory

Parent Returns the MetaCube object.

MsgBox MyMetaCube.Parent.Name

SummaryType Integer: Indicates the type of calculation to perform, as corre-
lated to the numeric values identified in Table 8-26.

MsgBox MyMetaCube.SummaryType = SummaryCount

Table 8-26 Summary Class of Objects: SummaryType Constants

Type of Summarization MetaCons.bas Constant Name Constant

Subtotal SummaryTotal 1

Average SummaryAverage 2

Count SummaryCount 3

Minimum SummaryMin 4

Maximum SummaryMax 5

Grand Total, All Rows SummaryRowGrandTotal 11

Average, All Rows SummaryRowGrandAverage 12
8-70 MetaCube Application Programmer’s Manual

The QueryBackJob Class of Objects
Summary objects that calculate subtotals and averages require you to specify
the name of the attribute for which to calculate the average or subtotal. But,
as Table 8-26 indicates, the Summary object can perform many calculations
that do not require a QueryCategory object as an argument. In place of a
QueryCategory object, Visual Basic developers can simply write Nothing or
some other value that the development environment’s editor will accept.

The Summary object does not feature any methods, nor does it own any
collections.

The QueryBackJob Class of Objects
Submitting a query for background processing instantiates a QueryBackJob
object with the same name as the saved query. Please note that the Query-
BackJob object does not feature an add method, as each job is submitted and
retrieved by deploying Query object methods.

Count, All Rows SummaryRowGrandCount 13

Minimum Value, Among All Rows SummaryRowGrandMin 14

Maximum Value, Among All Rows SummaryRowGrandMax 15

Grand Total, All Columns SummaryColumnGrandTotal 21

Average, All Columns SummaryColumnGrand-
Average

22

Count, All Columns SummaryColumnGrandCount 23

Minimum Value, Among All
Columns

SummaryColumnGrandMin 24

Maximum Value, Among All
Columns

SummaryColumnGrandMax 25

Table 8-26 Summary Class of Objects: SummaryType Constants (continued)

Type of Summarization MetaCons.bas Constant Name Constant
The QueryBackJob Class of Objects 8-71

QueryBackJob Properties
The Metabase object organizes its QueryBackJob collection by user, only
showing those QueryBack jobs submitted by a particular user. You cannot
create public QueryBackJobs. The Query object organizes its QueryBackJob
collection by query, such that each collection only consists of the Query-
BackJobs spawned from that Query object.

QueryBackJob Properties
The properties of a QueryBackJob describe the status of a query submitted to
QueryBack. After a user submits a query to QueryBack, a server-side sched-
uling daemon that periodically rouses to identify any new jobs will assign the
query a unique job identification number. If the user schedules the job to run
immediately, the scheduling daemon places the job on a queue of jobs
submitted by other users, arranging jobs on the queue according to their
priority. When a server processor becomes available, the scheduling daemon
spawns a process to execute the query, storing the result on the database. If a
user schedules a job to run in the future, the scheduling daemon stores the
query’s definition until the time specified, at which time the job is placed on
the queue as before.

Because all of the properties of a QueryBackJob depend on the status of
server-side processes, you cannot assign values to these properties and they
are, in effect, read-only. To retrieve values for a QueryBackJob’s properties,
you must first deploy the RefreshStatus method, as explained below.

Table 8-27 summarizes the property of the QueryBackJob class of objects:

Table 8-27 QueryBackJob Class of Objects: Properties

Property Description/Example

ErrorCode Integer: Stores any error codes returned by the server while
processing a QueryBack job.

MsgBox MyQueryBackJob.ErrorCode

ErrorText String: Stores any error message returned by the server while
processing a QueryBack job.

MsgBox MyQueryBackJob.ErrorText
8-72 MetaCube Application Programmer’s Manual

QueryBackJob Properties
JobID Long integer: The unique identification number assigned to
each QueryBack job by the scheduling daemon upon
submission.

MsgBox MyQueryBackJob.JobID

Name String: Indicates the name of the QueryBack job, which corre-
sponds to the original name of the Query object submitted for
background processing. The default property.

MsgBox MyQueryBackJob.Name

Parent Object: Metabase object.

MsgBox MyQueryBackJob.Parent.Name

Priority Integer: Indicates the priority assigned to the job upon
submission.

If MyQueryBackJob.Priority > 3 _
 Then MsgBox "Query will run soon."

RecurType Integer: Indicates the frequency with which the scheduler will
re-execute the query, as signified by the numeric values
explained in Table 8-3 on page 8-18. Each recurrence of a
QueryBack job essentially automatically instantiates a new job,
with a new identification number, etc. Defaults to no recurrence.

If MyQueryBackJob.RecurType = RecurTypeNone _
 Then MsgBox"The query not scheduled to run again."

Size Long, read-only: This property stores the number of rows that a
QueryBackJob object will return to the client. If the Query-
BackJob has not executed on the server, the value of this
property is 0.

MsgBox MyQueryBackJob.Size

StartTime Date variant: Indicates the time at which the QueryBack job
actually began processing on the server. Null, pending
execution.

MsgBox MyQueryBackJob.StartTime

Table 8-27 QueryBackJob Class of Objects: Properties (continued)

Property Description/Example
QueryBackJob Properties 8-73

Related Numeric Constants
Related Numeric Constants
Table 8-28 on page 8-74 explains the significance of the three numeric values
possible for the QueryBackJob object’s Status property, listing the constant
names for these values as found in the MetaCons.bas file in your MetaCube
directory.

Status Integer: Indicates whether a QueryBack is pending, executing,
or complete, as signified by one of the numeric constants
described in Table 8-28 on page 8-74. Jobs that have been
submitted to run at a later date, as well as jobs on the scheduler’s
queue, are identified as pending.

MsgBox MyQueryBackJob.Status

StopTime Date variant: Indicates the time at which the server finished
processing the query.

MsgBox MyQueryBackJob.StopTime

SubmitTime Date variant: Indicates the time at which the user submitted the
job.

MsgBox MyQueryBackJob.SubmitTime

TargetStart Date variant: Indicates the time at which the user requested that
the QueryBack job begin processing, as specified in one of the
Submit method’s arguments. Differences between the value of
this property and that of the StartTime property depend on the
length of the job queue.

MsgBox MyQuery.TargetStart

Table 8-28 QueryBackJob Class of Objects: Status Constants

Job Status MetaCons.bas Constant Name Constant

Pending QueryBackJobStatusPending 0

Executing QueryBackJobStatusRunning 1

Completed QueryBackJobStatusFinished 2

Table 8-27 QueryBackJob Class of Objects: Properties (continued)

Property Description/Example
8-74 MetaCube Application Programmer’s Manual

QueryBackJob Methods
QueryBackJob Methods
Table 8-29 summarizes the methods of the QueryBackJob class of objects.

Table 8-29 QueryBackJob Class of Objects: Methods

Method Description/Example

DeleteJob Deletes a pending or completed job from the queue. Deleting a
recurring job prevents that job from spawning a new incarnation
of itself for the following, day, month, or year. When applied to
a completed QueryBackJob, this method deletes whatever tables
store their results.

MyQueryBackJob.DeleteJob

RefreshStatus Retrieves and refreshes values of the QueryBackJob object’s
properties. Before performing any operation on an existing
QueryBackJob, you must deploy this method. You can also
deploy this method on an entire collection of QueryBackJob
objects:

MyMetabase.QueryBackJob.RefreshStatus

Retrieve This method retrieves from the database the result of a
QueryBack job, returning a Query object and, if the Scratch
property was set to false prior to submission, any children of
that object that existed when the query was submitted.

Set MyQuery = MyQueryBackJob.Retrieve

For an example of an application that submits a query to
QueryBack and retrieves the result, see MetaCube API Exercise
21 on page 8-15.
QueryBackJob Methods 8-75

QueryBackJob Collections
QueryBackJob Collections
Table 8-30 summarizes the methods available for QueryBackJob collections:

Table 8-30 QueryBackJob Class of Objects: Collections

Collection Description

RefreshStatus Retrieves and refreshes the values returned by all properties for
all QueryBackJob objects in a collection.

MyMetabase.QueryBackJobs.RefreshStatus

ItemJobID Object: the unique identification number that the scheduling
daemon assigns to each QueryBackJob object when the job is
submitted. This number is the index into the QueryBackJobs
collection.

MyMetabase.QueryBackJobs.ItemJobID
8-76 MetaCube Application Programmer’s Manual

9
Chapter
The Schema Class of Objects
and Its Collections
Schemas, Tables, Columns 9-3

9-2 Meta
Cube Application Programmer’s Manual

This brief chapter introduces the Schema class of objects and its
hierarchy of Table and Column collections. All three object classes feature a
Name property by which you can view the names of the schemas/table
owners, tables, and columns in the relational database. MetaCube Warehouse
Manager invokes these objects to populate the Physical Object Map, a view
of schemas/table owners, tables, and columns in the database.

This entire class of objects and its descendants are provided for your
reference when creating the metadata-map of the physical structures within
the relational database. MetaCube creates the collections of Schema, Table,
and Column objects by reviewing the database system tables. You thus
cannot instantiate an object within any of these collections except indirectly,
by creating a new table owner, a table, or a column in the relational database.
You also cannot change the properties of these objects, as they are read-only.

Schemas, Tables, Columns
The Schema class of objects features only a single property, Name, which
stores the string name of a schema/table owner in the relational database.
Within the collection of Schema objects, there is a Schema object for each
schema/table owner in the database’s system tables. Each Schema object
owns a collection of Table objects identifying the tables within that
schema/table owner.

Like the Schema object class, the Table class of objects features only a single
property, the Name property, which identifies the name of the table that the
object represents. Each table so identified stores a set of columns, described
by the Table object’s collection of Column objects.
Schemas, Tables, Columns 9-3

Schemas, Tables, Columns
The Column object features two properties: the Name property, which
identifies the name of a column in the table owning that Column object, and
the Type property, which indicates the type of data stored in the column. The
Type property identifies different column types by an integer code, summa-
rized in Table 9-1.

Table 9-1 Column Type Constants

Column Type MetaCons.bas Constant Name Constant

Character or Variable Character DataTypeCharacter 0

Numeric DataTypeNumeric 1

Date DataTypeDate 2

Other DataTypeUnsupported 3
9-4 MetaCube Application Programmer’s Manual

10
Chapter
The User and DSSSystem
Classes of Objects
The DSSSystem Class of Objects 10-3
DSSSystem Properties 10-4
DSSSystem Collections 10-4

The User Class of Objects. 10-4
Instantiating a User Object 10-5
User Properties 10-5
User Methods 10-10
User Collections 10-11

The AvailableDSSSystems Class of Objects. 10-13
Instantiating an AvailableDSSSystem Object 10-13
AvailableDSSSystem Properties and Methods 10-14

10-2 Me
taCube Application Programmer’s Manual

This chapter introduces the Users class of objects, the DSSSystems
class of objects, and the AvailableDSSSystems class of objects, a child of the
Users class.

In MetaCube Secure Warehouse, an administrator manages access to data by
assigning DSS Systems to users or users to DSS Systems. The administrator
can further restrict the availability of data by assigning mandatory filters to a
user of a DSS System. By defining a users’s properties in Secure Warehouse,
the administrator specifies how that user can interact with an Informix
database. All of these Secure Warehouse procedures are accomplished by
manipulating the Users, DSSSystems and AvailableDSSSystems classes of
objects.

The DSSSystem Class of Objects
The DSSSystem class of objects is used in MetaCube Secure Warehouse to
represent DSSSystems that are available in metadata for a particular database
connection. In Secure Warehouse, the DSSSystems listed in the DSSSystems
tree correspond to the member objects of a DSSSystems collection.

You cannot deploy an Add method to instantiate a DSSSystem object.
Instead, after MetaCube connects to the database, the DSSSystems collection
is populated with DSSSystem objects defined in metadata. To create a new
DSSSystem object, use Metabase.CreateNew, as described in “Metabase
Methods” on page 3-11.

There are few manipulations you can perform on a DSSSystem object; the
class has only two properties and no methods.
The DSSSystem Class of Objects 10-3

DSSSystem Properties
DSSSystem Properties
Table 10-1 describes the two properties available for the DSSSystem class of
objects.

DSSSystem Collections
In Secure Warehouse, the DSSSystems collection represents all of the
DSSSystems available for a particular database connection. Although the
DSSSystems collection of objects has no Add method, it does provide all the
other standard methods available for manipulating MetaCube collections,
such as MakeFirst, MakeNth, and Remove (see Table 1-1 on page 1-7). It also
includes the standard properties Count and Names (see “Object Class
Hierarchies and Collections” on page 1-6).

The User Class of Objects
The User class of objects supports the actions a data warehouse administrator
would perform while using Secure Warehouse, such as assigning DSS
Systems and mandatory filters to users and defining user properties. In
Secure Warehouse, the Users listed in the Users tree correspond to the
member objects of a Users collection. To manipulate users, you must be a
secure user—that is, the data warehouse administrator must use MetaCube
Secure Warehouse to grant you access to Secure Warehouse and Warehouse
Manager.

Table 10-1 DSSSystem Class of Objects: Properties

Property Description/Example

LastUpdate Stores as a variant the date and time the DSS System’s metadata
was last updated.

MsgBox MyDSSSystem.LastUpdate

Name A string that identifies the name of the DSS System.

MyDSSystem.Name = "Finance Demo"
10-4 MetaCube Application Programmer’s Manual

Instantiating a User Object
Instantiating a User Object
To instantiate a User object, add a new instance of the User class of objects to
a Metabase object’s collection of users:

MyMetabase.Users.Add "User1"

When instantiating a user, you must include the name of the user as an
argument. To call the Add method, a user must be granted access to Secure
Warehouse (that is, the property User.SecureUser must be set to true).

User Properties
A User object combines three categories of information: DSS Systems
available to this user (represented by the AvailableDSSSystems collection,
which is a child of the User object), mandatory filters (assigned using
methods available in the User class), and user properties.

The properties of a User object control how a user interacts with an Informix
database. For example, one property defines the PDQ Priority to use while
processing a user’s queries. Table 10-2 summarizes the properties of the User
class of objects.

Table 10-2 User Class of Objects: Properties

Property Description/Example

AuditUser Boolean. A true value indicates that MetaCube will record infor-
mation about queries run by the user. This information can be
used to tune system performance.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.AuditUser = True

ConnectString String: Identifies the ODBC data source; defaults to the value of
Metabase.ConnectString.

MyUser.ConnectString = "MetaDemo"
Instantiating a User Object 10-5

User Properties
DataSkip Long: Determines whether an Informix RDBMS can skip locked
or otherwise unavailable rows when attempting to retrieve data
for the user. Table 3-5 on page 3-15 identifies the possible
constants for this property. DataSkip is enabled or disabled
when the user connects to MetaCube and an Informix RDBMS.
Defaults to the server setting.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.DataSkip = DataSkipOff

For more information, see the DATASKIP entry in the Informix
Guide to SQL: Syntax.

DefaultDSS String: Identifies the name of the default DSS System for the
user. The default value for this property is null.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.DefaultDSS = "Finances"

ForeignUser Boolean. A true value for this read-only property indicates the
current user exists in the client table for the current database
connection and an entry for the current user exists in the
MetaCube registry, but the ConnectString information for the
user, as stored in the registry, does not match the connect string
used for the current database connection.

MyUser.ForeignUser = True

MandatoryQB Boolean. A true value indicates that this user cannot run queries
in real time and must generate QueryBack jobs.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.MandatoryQB = True

Table 10-2 User Class of Objects: Properties

Property Description/Example
10-6 MetaCube Application Programmer’s Manual

User Properties
MaxTotal-
Fetches

Long: A number greater than zero that determines the
maximum number of rows that MetaCube will retrieve for a
single SQL statement.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.MaxTotalFetches = 200

MetaSchema String: The prefix applied to MetaCube metadata tables to
ensure their uniqueness in the RDBMS; defaults to the value of
Metabase.MetaSchema.

MyUser.MetaSchema = "MetaCube."

Name String: The name of the User object, specified as an argument
upon instantiation. This name should be unique within a Users
collection, and its uniqueness will be enforced when you use the
User.Save method.

MyUser.Name = "New Name"

PDQPriority Long: An integer from -1 to 100. This property designates the
Parallel Data Query (PDQ) Priority of the users’s decision
support system queries submitted by MetaCube to the Informix
database. PDQ Priorities determine the extent to which the
Informix database executes a user’s queries in parallel.

A value of 0 explicitly precludes any parallel operations, a value
of one enables only parallel scans, and values between two and
100 represent the percent of available system resources that
queries against this decision support system can consume. In
multi-processor systems, high PDQ Priorities enable the
database to process queries faster.

The value of this property defaults to -1, indicating that
MetaCube will not set PDQ Priority for a user.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.PDQPriority = 50

For more information about PDQPriority, see the INFORMIX-
OnLine Dynamic Server Administrator’s Guide.

Table 10-2 User Class of Objects: Properties

Property Description/Example
User Properties 10-7

User Properties
QBPriority Long: The priority to be assigned to QueryBack jobs submitted
by the user.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.QBPriority = 3

QBSpace String: The dbspace to be used for objects created for the user.
An empty string indicates that the default dbspace should be
used.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.QBSpace = ""

QueryBack-
Times

String: Identifies the hours when this user’s QueryBack jobs can
execute. The string consists of triplets, that is, multiples of three
numbers:

■ The first number specifies the day of the week. Possibilities
range from 1 to 7, where 1 = Monday and 7= Sunday.

■ The second number specifies the start time, as measured in
seconds (0 to 86,399)

■ The third number specifies the stop time, also measured in
seconds (0 to 86,399)

The numbers within each triplet are delimited by slashes. The
triplets themselves are delimited by backslashes. For example,
1/0/86399\2/0/86399 consists of two triplets that allow the
user to execute QueryBack jobs all day on Monday and Tuesday.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.QueryBackTimes = "1/0/86399\2/0/86399"

QueryBack-
TimesCount

A read-only property provided to help client applications parse
the QueryBackTimes string.

MgsBox MyUser.QueryBackTimesCount

Table 10-2 User Class of Objects: Properties

Property Description/Example
10-8 MetaCube Application Programmer’s Manual

User Properties
Role String: The name of the Informix role that will be assigned to the
user. An empty string indicates that no role will be assigned.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.Role = ""

SecureUser Boolean. A true value indicates this user is authorized to access
Secure Warehouse and MetaCube Warehouse Manager. The
default value is false. During upgrades from previous
MetaCube versions, the user "metapub" is always set to true.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.SecureUser = True

SlowQuery-
Warning

Long: An integer greater than zero that defines the threshold for
issuing a slow query warning. MetaCube Explorer displays a
slow query warning when a user submits a query with a
processing cost greater than this threshold value. Processing
costs are based on values that the data warehouse administrator
assigns to metadata tables.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.SlowQueryWarning = 10000

UserSetPDQ Boolean. A true value indicates that the user can set his or her
own PDQ Priority in a client application.

Only users who have been granted access to Secure Warehouse
(that is, the property User.SecureUser is set to true) can call this
method.

MyUser.UserSetPDQ = True

Table 10-2 User Class of Objects: Properties

Property Description/Example
User Properties 10-9

User Methods
User Methods
Table 10-3 summarizes the methods of the User class of objects.

Table 10-3 User Class of Objects: Methods

Method Description/Example

AddMandatory-
Filter

Adds a mandatory filter to the collection of filters owned by
the user. The method requires two arguments: a string
providing the full path to the filter and a string providing the
owner of the filter. The owner should always be metapub. The
full path to a filter is obtained by deploying
Filter.FullPathName.

Only users who have been granted access to Secure
Warehouse (that is, the property User.SecureUser is set to true)
can call this method.

MyUser.AddMandatoryFilter _
 "\Mandatory\Time\LastYear", "metapub"

Delete Deletes a user from the RDBMS metadata and deletes that
user’s entry from the MetaCube engine’s registry. Only users
who have been granted access to Secure Warehouse (meaning
the property User.SecureUser is set to true) can call this
method.

MyUser.Delete

Mandatory-
FilterNames

Retrieves a ValueList of the names and paths of mandatory
filters. The method takes one argument: the DSS System object
for which filters should be retrieved.

MsgBox MyUser.MandatoryFilterNames MyDSSSystem

Mandatory-
FilterOwners

Retrieves a ValueList of the owners of mandatory filters. The
method takes one argument: the DSS System object for which
filters should be retrieved. Each item in the ValueList corre-
sponds to an item in the ValueList generated by
MandatoryFilterNames. The order of both lists is identical and
cannot be changed.

MsgBox MyUser.MandatoryFilterOwners MyDSSSystem
10-10 MetaCube Application Programmer’s Manual

User Collections
User Collections
In Secure Warehouse, the Users collection represents all of the users with
entries in the MetaCube registry. Typically, this corresponds to all the users
who are being managed with Secure Warehouse. The Users collection
provides all the standard methods available for manipulating MetaCube
collections, such as MakeFirst, MakeNth, and Remove (see Table 1-1 on
page 1-7), and it also includes the standard properties Count and Names (see
“Object Class Hierarchies and Collections” on page 1-6). In addition to the
standard methods and properties available to all collections, the Users
collection provides the methods summarized in Table 10-4.

Note that to call the Remove method, a user must be granted access to Secure
Warehouse (that is, the property User.SecureUser must be set to true).

Remove-
MandatoryFilter

Removes a mandatory filter from the collection of mandatory
filters owned by this user. This method does not remove this
filter from the RDBMS metadata. The method requires two
arguments: a string providing the full path to the filter and a
string providing the owner of the filter. The full path to a filter
is obtained by deploying Filter.FullPathName.

Only users who have been granted access to Secure
Warehouse (that is, the property User.SecureUser is set to true)
can call this method.

MyUser.RemoveMandatoryFilter _
 "\Mandatory\Time\LastYear", "metapub"

Save Saves the user to the RDBMS metadata. Only users who have
been granted access to Secure Warehouse (meaning the
property User.SecureUser is set to true) can call this method.

MyUser.Save

Table 10-3 User Class of Objects: Methods

Method Description/Example
User Collections 10-11

User Collections
Table 10-4 Users Class of Objects: Methods

Method Description/Example

LoadUsers Loads all user information contained in the metadata client
table; typically used for Secure Warehouse only. No standard
MetaCube applications except Secure Warehouse need the
user information stored in the client table, so to improve
performance, the MetaCube analysis engine normally does
not load that information into memory. Custom-built applica-
tions, however, may require the user information available in
the client table.

Note that all user information stored in the registry of the
MetaCube analysis engine is always available, and that infor-
mation is sufficient to display a list of users in Secure
Warehouse. To access user properties, however, the LoadUser
method must be deployed.

MyUsers.LoadUsers

PurgeRegistry Removes user entries from the MetaCube registry. This
method is used to clean up the registry when a DSS System or
database connection is no longer used. Which user entries are
actually removed by this method depends on this method’s
one argument, a string that contains the connect string for a
database connection. Based on that string, MetaCube will do
either of the following:

■ If the connect string does not match the connect string for
the current connection, MetaCube will purge from its
registry all user entries containing the specified connect
string.

■ If the connect string does match the connect string for the
current connection, MetaCube will purge from its registry
all entries for users who do not have an entry in the Client
table but who do have a connect string that matches the
specified connect string.

Only users who have been granted access to Secure
Warehouse (meaning the property User.SecureUser is set to
true) can call this method.

MyUsers.PurgeRegistry "MetaCube Demo"
10-12 MetaCube Application Programmer’s Manual

The AvailableDSSSystems Class of Objects
The AvailableDSSSystems Class of Objects
Each AvailableDSSSystem class of objects is a child of a User object. An Avail-
ableDSSSystems object is a collection representing the DSSSystems that a
particular user can access. The members of an AvailableDSSSystems
collection are actually pointers to objects in the DSSSystems collection that is
owned by the Metabase object. (For more information, see “The DSSSystem
Class of Objects” on page 10-3.) In Secure Warehouse, the AvailableDSS-
Systems collection represents all of the DSSSystems that have been assigned
to a user, thus granting that user access to those DSS Systems.

Instantiating an AvailableDSSSystem Object
To instantiate an AvailableDSSSystems object, add an instance of the Avail-
ableDSSSystems class of objects to a User object:

MyMetabase.User.AvailableDSSSystems.Add MyDSSSystems

When instantiating an AvailableDSSSystems object, you must provide a
DSSSystems object as an argument.

SynchRegistry Adds users to the MetaCube registry in bulk. When called, this
method adds entries to the registry for all users who exist in
the Client table for the current database connection but do not
have an entry in the registry. Once a user has a registry entry,
that user is displayed in MetaCube Secure Warehouse and can
connect to a database using Web Explorer.

Only users who have been granted access to Secure
Warehouse (meaning the property User.SecureUser is set to
true) can call this method.

MyUsers.SynchRegistry

Table 10-4 Users Class of Objects: Methods

Method Description/Example
The AvailableDSSSystems Class of Objects 10-13

AvailableDSSSystem Properties and Methods
AvailableDSSSystem Properties and Methods
The AvailableDSSSystems collection provides all the standard methods
available for manipulating MetaCube collections, such as MakeFirst,
MakeNth, and Remove (see Table 1-1 on page 1-7), and it also includes the
standard properties Count and Names (see “Object Class Hierarchies and
Collections” on page 1-6).
10-14 MetaCube Application Programmer’s Manual

11
Chapter
The SystemMessage Class of
Objects
The SystemMessage Class of Objects 11-3

11-2 Me
taCube Application Programmer’s Manual

This very brief chapter introduces the SystemMessage class of objects,
which allows you to distribute messages to all users within a DSS System.
MetaCube Agent Administrator, MetaCube’s client-side tool for database
administrators, enables administrators to create messages that users can
view through Explorer’s interface. Both applications either get or set
properties of the SystemMessage object.

The SystemMessage Class of Objects
To distribute a new message throughout the MetaCube family of applica-
tions, you must instantiate a new SystemMessage object. To instantiate a
SystemMessage object, you must enter the message itself as the first
argument and the date and time as the second. The CurrentTime property of
the Metabase object can furnish the latter argument:

MyMetabase.SystemMessages.Add _
"The Data Warehouse is operational!", _

MyMetabase.CurrentTime

Note that you need not specify the name of the SystemMessage object, as this
class of objects does not feature a Name property. If you find it necessary to
identify a particular SystemMessage object, do so by index number. Aside
from the standard Parent property, the string text of the message and its date
are the only properties of the SystemMessage object, as explained in Table
11-1 on page 11-4.
The SystemMessage Class of Objects 11-3

The SystemMessage Class of Objects
The SystemMessage object features no methods and owns no collections.

Table 11-1 SystemMessage Class of Objects: Properties

Property Description/Example

LastUpdate Date variant: The time and date of the message.

MySystemMessage = MyMetabase.CurrentTime

Message String: The text of the message. Default property.

MySystemMessage.Message = "Up and running"

Parent The Metabase object. The scope of a message is limited to a DSS
System.

MsgBox MySystemMessage.Parent.Name
11-4 MetaCube Application Programmer’s Manual

12
Chapter
The ValueList
The ValueList . 12-3

12-2 Me
taCube Application Programmer’s Manual

This chapter introduces the ValueList.

The ValueList
To return multiple values into different development environments,
MetaCube allows you to specify the format in which to return those values.
Any property which stores a set of values as a ValueList can include an
additional term in its syntax indicating that the values should be stored as an
array or a tab-delimited string. In addition, you can specify a subset of the
values in the ValueList, the maximum number of values to return, or the
order in which to return them.

The objects that return a ValueList and the properties of those objects are:

■ Dimension.AttributeNames

■ Attribute.ValueList

■ FactTable.MeasureNames

■ MetaCube.FormatStrings

■ Extension.Arguments

■ Extension.ArgumentTypes

■ Extension.Functions

■ Extension.Types

■ MetaCube.PageLabels

■ All objects’ VerifyResults properties
The ValueList 12-3

The ValueList
Table 12-1 summarizes the commands that can be appended to a statement
returning a ValueList. Note that three of the five commands apply to only the
actual ValueList property of the Attribute object. The remaining commands,
or specifications, are illustrated with an example involving an instantiation
of the Dimension class of objects, as represented by an object variable named
MyDimension, and that object’s AttributeNames property. You can
substitute any of the objects and their respective properties listed on the
previous page.

Table 12-1 ValueList Specifications

Specification Description/Example

ArrayValues This specification translates the values represented in a
ValueList to an array, which can be stored in a variant or array
variable in Visual Basic for Applications and in other variable
types in other development environments. Visual Basic 3.0 does
not support the passing of arrays through object linking and
embedding. You can translate the values in any ValueList to an
array.

Let VariantVariable = _
 MyDimension.AttributeNames.ArrayValues

MaxRows Treat this command as a property of the Attribute object’s
ValueList property, which represents all the values for the
attribute. MaxRows can be set equal to any long value.
MaxRows limits the number of values that the ValueList
property can return, a function useful for preventing tab-
delimited strings from becoming unwieldy. The default is 200.
You cannot set a maximum on the values in ValueLists returned
by properties other than Attribute object’s ValueList property.

Let MyAttribute.ValueList.MaxRows = 2

MsgBox MyAttribute.ValueList.TabbedValues

Sort This command specifies a sort on the values represented in the
Attribute object’s ValueList property. Set the Sort command
equal to a long value or corresponding constant, as specified in
Table 8-7 on page 8-23. You cannot sort values in ValueLists
represented by any property other than the ValueList property
of the Attribute object.

Let MyAttribute.ValueList.Sort = SortDirectionDesc

MsgBox MyAttribute.ValueList.TabbedValues
12-4 MetaCube Application Programmer’s Manual

The ValueList
Subset This command allows you to use SQL wildcard syntax to specify
a subset of the values in an Attribute object’s ValueList. You can
apply this command only to a ValueList represented by an
Attribute object’s ValueList property.

Let MyAttribute.ValueList.Subset = “%x%”

MsgBox MyAttribute.ValueList.TabbedValues

This example only displays values that include the letter “x.”

TabbedValues This specification translates the values represented by a
ValueList into a tab-delimited string. If you do not indicate how
MetaCube should return the values in a ValueList, MetaCube
will, by default, return the values as a tab-delimited string. You
can deploy this command on any ValueList, as returned by any
of the properties listed above.

Let StringVariable = _
 MyDimension.AttributeNames.TabbedValues

or simply

Let StringVariable = MyDimension.AttributeNames

Table 12-1 ValueList Specifications (continued)

Specification Description/Example
The ValueList 12-5

The ValueList
12-6 MetaCube Application Programmer’s Manual

13
Chapter
OLE Requirements: the
Application Class of Objects
and Global Properties

The Application Class of Objects 13-3

Global Properties: Application and Type 13-4

13-2 Me
taCube Application Programmer’s Manual

This chapter briefly explains the Application class of objects, the
highest-level object class for any OLE software server. For all MetaCube
applications this object represents the MetaCube engine. We previously intro-
duced the Metabase class of objects as the parent of all other object classes in
MetaCube’s hierarchy. For the purposes of application development this will
always be the case. However, the OLE standard requires the Application
object class, which we include here for the sake of completeness.

This chapter also introduces two properties that apply to all MetaCube object
classes.

The Application Class of Objects
Table 13-1 summarizes the properties of the Application class of objects.

Table 13-1 Application Class of Objects: Properties

Property Description/Example

FullName String: This property returns the file name and location of the
MetaCube engine, including the path. Typically, the value of this
read-only property will be “c:\metacube\metacube.exe.”

MsgBox Application.FullName

Name String: This read-only property returns the name of the appli-
cation, in this case, “MetaCube.” This property is the default
property of the Application object.

MsgBox Application.Name

Parent Object: This property returns the parent of the Application
object, which is the Application object itself. This property is
required by OLE but is otherwise useless.

Visible Boolean: Returns false. Required by OLE.
The Application Class of Objects 13-3

Global Properties: Application and Type
The Application class of objects features no methods and only one collection,
the collection of Metabase objects currently active. When deploying
properties of the Application object class in Visual Basic for Applications, you
will notice that the name of the application returned is Excel, as Excel and
MetaCube communicate continuously. In an application compiled as an
executable, the Application object will represent the MetaCube engine
installed in your computer.

Global Properties: Application and Type
All MetaCube object classes have in common two properties, the Application
property and the Type property. The Application property returns the name
of the application, “MetaCube.” The Type property returns the name of the
object class of which the object is an instance, such as “Measure” or “Dimen-
sionElement.” Both properties are read-only and return strings.
13-4 MetaCube Application Programmer’s Manual

14
Chapter
Scoping Rules
Scoping Rules . 14-3
The DimensionElement Object Class 14-3
The Attribute Object Class 14-4
The Measure Object Class 14-4

14-2 Me
taCube Application Programmer’s Manual

This chapter briefly explains rules for identifying objects that have the
same name but belong to a different parent or belong to a different class
entirely.

Scoping Rules
To avoid ambiguity when specifying the name of a DimensionElement,
Attribute, or Measure object, follow the conventions discussed below.

The DimensionElement Object Class
You can identify a DimensionElement object by name if the name of the
DimensionElement object is unique throughout the DSS System. If
dimension elements belonging to different dimensions are described by
objects of the same name, you can specify the name of the parent Dimension
object. If a DimensionElement object and an Attribute object belonging to the
same dimension share the same name, you can also indicate that you refer to
the DimensionElement object, not the Attribute object. To identify a Dimen-
sionElement named “Brand” within the “Product” dimension, three names
are possible, listed in order of increasing scope and precision:

MyQuery.QueryCategories.Add “Brand”
MyQuery.QueryCategories.Add “Product.Brand”
MyQuery.QueryCategories.Add _

“DimensionElements.Product.Brand”
Scoping Rules 14-3

The Attribute Object Class
The Attribute Object Class
You can identify an Attribute object by name if the name of the Attribute
object is unique throughout the DSS System. If attributes belonging to
different dimensions are described by objects of the same name, you can
specify the name of the parent Dimension object. If an Attribute object and a
DimensionElement object belonging to the same dimension share the same
name, you can also indicate that you refer to the Attribute object, not the
DimensionElement object. To identify an Attribute named “Brand” within
the “Product” dimension, three names are possible, listed in order of
increasing scope and precision:

MyQuery.QueryCategories.Add “Brand”
MyQuery.QueryCategories.Add “Product.Brand”
MyQuery.QueryCategories.Add _

“Attributes.Product.Brand”

The Measure Object Class
You can identify a Measure object by name if the name of the Measure object
is unique throughout the DSS System. If measures belonging to different fact
tables are described by objects of the same name, you can specify the name of
the parent FactTable object. If a Measure object and some other object
associated with the fact table share the same name, you can also indicate that
you refer to an object of the Measure class.

To identify a Measure named “Units Sold” within the “Sales Transaction” fact
table, three names are possible, listed in order of increasing scope and
precision:

MyQuery.QueryItems.Add “Units Sold”
MyQuery.QueryItems.Add _

“Sales Transactions.Units Sold”
MyQuery.QueryItems.Add _

“Measures.Sales Transactions.Units Sold”

It is good programming practice to scope as precisely as possible. For
simplicity's sake, some examples in this text have not been precisely scoped.
14-4 MetaCube Application Programmer’s Manual

Index

Index
A
Aggregate Class of Objects 6-12

collections 6-12
collection's add method 6-8
methods 6-12
properties 6-9

AggregateGrant Class of
Objects 6-13

AggregateGroup Class of
Objects 6-14

AggregateIndex Class of
Objects 6-16

AggregateMeasure Class of
Objects 6-18

Arguments
in functions and procedures 1-15
scoping convention for attribute,

dimension element, measure
names 2-9, 2-10, 14-4

AvailableDSSSystems Class of
Objects 10-13 to 10-14

collection’s add method 10-13
methods 10-13
properties 10-13

B
Buckets 5-42

C
Class

hierarchy
for C++ API, illustrated 1-10

not available through C++ API,
illustrated 1-11

Collections See Object Collections
Complex Comparisons 5-45
Connecting to the relational

database 2-4, 2-7
Constants 2-21

D
Decision Support Software (DSS)

System 1-12, 2-4
MetaCube Demo DSS 2-6

Dimension Class of Objects 4-8
as owned by a FactTable

object 6-21
collections 4-8
collection's add method 4-4

DimensionElement Class of
Objects 4-13

collections 4-13
collection's add method 4-9
methods 4-12
properties 4-9

DimensionMapping Class of
Objects 6-20

DSSSystem Class of
Objects 10-3 to 10-4

collections 10-4
properties 10-4

E
Extension Class of Objects

instantiating 5-4
properties 5-5

F
FactTable Class of Objects 6-6

collections 6-6
collection's add method 6-3
methods 6-6
properties 6-4

Filter Class of Objects 2-16, 8-33
as owned by a Query object 8-37
methods 8-33
properties 8-32

Folder Class of Objects 7-9
instantiating 7-4
methods 7-6
properties 7-5

I
Installation 1-12
Instantiating Objects 1-12, 3-4

L
Launching MetaCube 1-12, 2-4, 2-6

M
Main MetaCube Extension 5-45

ABS_CHANGE 5-11
Bucket 5-42
FracGTot 5-14
FracOTot 5-16
FracPTot 5-17
FracSTot 5-18
FracTot 5-21
MovingAvg 5-23
MovingSum 5-25
nesting expressions 5-39
PCT_CHANGE 5-28
PCT_PREV 5-29
QUANTILE 5-31
RUNNINGSUM 5-32
TOPN 5-34, 5-37
TOPPCT 5-38

Main MetaCube Extensions
compare 5-45

Measure Class of Objects

collection's add method 6-22
Metabase Class of Objects 1-12, 2-4

creating an instance of 3-3
MetaCube

class
hierarchy, illustrated 1-10, 1-11

MetaCube Class of Objects 2-13,
8-68

collections 8-68
collection's add method 8-38
methods 8-56
related constants 8-54

MetaCube Explorer 1-13, 2-3
MetaCube Secure Warehouse 10-3
MetaCube Warehouse

Manager 2-3
MetaCube.ini File 2-6
Metadata

classes
illustrated 1-11

O
Object Classes 1-6
Object Collections 1-6, 3-3

general methods 1-7
Object Hierarchies 1-6, 3-3

inheritance 1-8
simplified representation of

MetaCube hierarchy 1-9
Object Variables

declaring 2-5, 2-8
releasing 1-15, 2-5

Object-Oriented Programming 1-5
ODBC Interface 1-5
OLE Automation 1-4, 1-5
Orientation Class of Objects 2-21,

8-68

P
Parallel Data Query Priority 3-10
Parameters 8-12

example in an application 8-15
Performance

on multi-processor systems 3-10
PowerBuilder 1-8

Q
Queries

executing 2-13
viewing SQL 2-10

Query Class of Objects 1-12, 2-9,
8-19

collections 8-19
instantiating 8-4
methods 8-18
properties 8-4
related constants 8-18

QueryBack See QueryBackJob Class
of Objects

QueryBackJob
example in an application 8-17

QueryBackJob Class of Objects
instantiating 8-12
methods 8-75
properties 8-72

QueryCategory Class of
Objects 8-23

QueryCategory Expressions See
Main MetaCube Extension

QueryItem Class of Objects
calculation property 2-27

QueryItem Expressions See Main
MetaCube Extension

S
Sample Class of Objects 6-28

instantiating 6-28
properties 6-28

SampleQualifier Class of
Objects 6-35

Scoping See Arguments, scoping
Security 2-6, 2-17
Sorting 2-25, 8-22, 8-68
Summary Class of Objects 8-69
SystemMessage Class of

Objects 11-3

U
User Class of Objects 10-4 to 10-11

collections 10-11
collection’s add method 10-5
2 MetaCube Application Programmer’s Manual

methods 10-10
properties 10-5

V
Visual Basic for Applications 1-16

comments 2-5
CreateObject 2-6, 3-4
CreateObject function 2-4
executing a procedure 2-6
inserting a macro module 1-16
Microsoft Excel 1-16
MsgBox 2-11
Option Explicit 2-5
Index 3

4 MetaCube Application Programmer’s Manual

	Answers OnLine Web Site
	Table of Contents
	Introduction
	Organization of This Manual
	Types of User
	Documentation
	Printed Documentation
	Readme Files
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Object-Oriented Programming and the MetaCube API
	OLE, OLE Automation, and MetaCube
	Introduction to Object-Oriented Programming
	Object Classes
	Object Class Hierarchies and Collections
	Declaring MetaCube Object Type Variables
	Compatibility
	Object Variables Used in MetaCube API Exercises

	Visual Basic for Applications

	Getting Started: MetaCube Tutorial
	MetaCube in Thirteen Lessons: An API Tutorial
	Explanation of MetaCube API Exercise 1
	Connection Information in the MetaCube API Exercis...
	Explanation of MetaCube API Exercise 2
	Explanation of MetaCube API Exercise 3
	Explanation of MetaCube API Exercise 4
	Explanation of MetaCube API Exercise 5
	Explanation of MetaCube API Exercise 6
	Explanation of MetaCube API Exercise 7
	Explanation of MetaCube API Exercise 8
	Explanation of MetaCube API Exercise 9
	Explanation of MetaCube API Exercise 10
	Explanation of MetaCube API Exercise 11
	Explanation of MetaCube API Exercise 12
	Explanation of MetaCube API Exercise 13

	The Metabase Class of Objects
	The Metabase Class of Objects
	Metabase Properties
	Connection Information in MetaCube 4.0

	Metabase Methods
	Related Constants
	Metabase Collections

	The Dimension Class of Objects and Related Collect...
	The Dimension Class of Objects
	The Dimension Collection’s Add Method
	Dimension Properties
	Dimension Methods
	Related Constants
	Dimension Collections

	The DimensionElement Class of Objects
	The DimensionElement Collection’s Add Method
	DimensionElement Properties
	DimensionElement Methods
	DimensionElement Collections

	The Attribute Class of Objects
	The Attribute Collection’s Add Method
	Attribute Properties
	Attribute Collections

	Extensions
	The Extension Class of Objects
	The Extensions Collection’s Add Method
	Extension Properties

	The Main MetaCube Extension Functions
	Extension Functions as QueryItem Expressions
	The Absolute Change Function
	Fraction of Grand Total
	Fraction of Orthogonal Total
	Fraction of Page Total
	Fraction of Subtotal
	Fraction of Total
	Moving Average
	Moving Sum
	Percent Change
	Percent of Previous
	Quantiles
	Running Sums
	Top N
	Top Percentage
	Nesting QueryItem Expressions

	Extension Functions as QueryCategory Expressions
	Bucket
	Compare

	The FactTable Class of Objects and Related Collect...
	The FactTable Class of Objects
	The FactTable Collection's Add Method
	FactTable Properties
	FactTable Methods
	FactTable Collections

	The Aggregate Class of Objects
	The Aggregate Collection’s Add Method
	Aggregate Properties
	Aggregate Methods
	Aggregate Collections

	The AggregateGrant Class of Objects
	The AggregateGroup Class of Objects
	The AggregateIndex Class of Objects
	The AggregateMeasure Class of Objects
	The DimensionMapping Class of Objects
	DimensionMapping Properties

	The Dimension Class of Objects, as Owned by a Fact...
	The Measure Class of Objects
	The Measure Collection’s Add Methods
	Measure Properties
	Explanation of MetaCube API Exercise 17

	The Sample Class of Objects
	The Sample Collection’s Add Method
	Sample Properties
	Explanation of MetaCube API Exercise 18

	The SampleQualifier Class of Objects
	SampleQualifier Properties

	The Folders Class of Objects
	The Folder Class of Objects
	Instantiating a Folder Object
	Folder Properties
	Folder Methods
	Explanation of MetaCube API Exercise 19

	The Query and QueryBack Classes of Objects and Rel...
	The Query Class of Objects
	Instantiating a Query Object
	Query Properties
	Query Methods
	Explanation of MetaCube API Exercise 20
	Explanation of MetaCube API Exercise 21

	Related Constants
	Query Collections

	The QueryCategory Class of Objects
	The SortDirection Property

	The QueryItem Class of Objects
	The FormatString and FormatStrings Properties: An ...
	Explanation of MetaCube API Exercise 22

	The Filter Class of Objects
	The Collection’s Methods
	Filter Properties
	Filter Methods

	The FilterElement Class of Objects
	The MetaCube Class of Objects
	Instantiating a MetaCube Object
	General Properties
	Properties of the Three-Dimensional Virtual Cube
	Related Numeric Constants
	Sorting: SortDirection and SortColumn Property
	Explanation of MetaCube API Exercise 23

	MetaCube Methods
	The DrillDown Method
	DrillUp Method
	Explanation of MetaCube API Exercise 24

	MetaCube Collections

	The Summary Class of Objects
	The QueryBackJob Class of Objects
	QueryBackJob Properties
	Related Numeric Constants
	QueryBackJob Methods
	QueryBackJob Collections

	The Schema Class of Objects and Its Collections
	Schemas, Tables, Columns

	The User and DSSSystem Classes of Objects
	The DSSSystem Class of Objects
	DSSSystem Properties
	DSSSystem Collections

	The User Class of Objects
	Instantiating a User Object
	User Properties
	User Methods
	User Collections

	The AvailableDSSSystems Class of Objects
	Instantiating an AvailableDSSSystem Object
	AvailableDSSSystem Properties and Methods

	The SystemMessage Class of Objects
	The SystemMessage Class of Objects

	The ValueList
	The ValueList

	OLE Requirements: the Application Class of Objects...
	The Application Class of Objects
	Global Properties: Application and Type

	Scoping Rules
	Scoping Rules
	The DimensionElement Object Class
	The Attribute Object Class
	The Measure Object Class

	Index

